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It strikes me that mathematical writing is similar to using a language. To
be understood you have to follow some grammatical rules. However, in
our case, nobody has taken the trouble of writing down the grammar; we
get it as a baby does from parents, by imitation of others. Some mathe-
maticians have a good ear; some not... That’s life.

JEAN-PIERRE SERRE

Jean-Pierre Serre (1926–). Quote taken from Serre (1991).
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Chapter 1

Elliptic Functions

While the elliptic functions can be defined in a variety of geometric and mechanical
ways, we begin with an analytic definition.

1.1. Motivation 1

A function f (z) is defined to be a simply periodic function of z if there exists a non-zero
constant ω1 such that

f (z + ω) = f (z)

holds for all values of z. This number ω is the period of f (z). Clearly, if n is a non-zero
integer then nω is also a period. If no submultiple of ω is a period, then it is known as
a fundamental period.

This is illustrated by the circular functions, for example

sin(z + 2π) = sin z = sin(z + 2nπ),

for all integer values of n. Therefore, sin z and also cos z are simply periodic functions
with period 2π . Similarly, ez is simply periodic with period 2π i.

Jacobi wondered whether there exists a function, analytic except at its poles, with 2

two fundamental periods whose ratio is real. It turns out that such a function is constant.
However, if the ratio is not real, this is not the case, and leads us to investigate further
such functions with two fundamental periods.

1.2. Definition of an elliptic function 3

Let ω1 and ω2 be two complex numbers whose ratio is not real. Then a function which
satisfies

f (z + ω1) = f (z) = f (z + ω2),

for all values of z for which f (z) is defined is known as a doubly periodic function of z
with periods ω1 and ω2. A doubly periodic function that is analytic except at its poles,

1Copson (1935) 345.
2Carl Gustav Jacob Jacobi (1804–1851). It was in 1834 that Jacobi proved that if a one-valued function

of one variable is doubly periodic, then the ratio of the periods is imaginary.
3Whittaker & Watson (1927) 429–430.
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and which has no singularities other than these poles in a finite part of the complex
plane is called an elliptic function.

Now, without loss of generality we take the imaginary part of the ratio of ω1 and
ω2 to be real. Therefore, the points 0, ω1, ω1 + ω2 and ω2 when taken in order are
the vertices of a parallelogram, known as the fundamental parallelogram. If we also
consider the points of the period lattice defined as � = {mω1 + nω2}, then the four
points mω1 + nω2, (m + 1)ω1 + nω2, (m + 1)ω1 + (n + 1)ω2 and mω1 + (n + 1)ω2
are vertices of a similar parallelogram, obtained from the original parallelogram by
a translation without rotation. This parallelogram is called a period parallelogram.
Therefore, the entire complex plane is covered by a system of non-overlapping period
parallelograms.

The points z and z + mω1 + nω2 lie in different period parallelograms. If we
translate one such parallelogram so that it coincides with the other, then the points also
coincide. Therefore, we say that z is congruent to z + mω1 + nω2 with respect to the
period lattice �. As mω1 + nω2 is a period of f (z), then it follows that f (z) takes the
same value at every one of a set of congruent points. Hence, the behaviour of an elliptic
function is completely determined by its values in any fundamental parallelogram.

Suppose we wish to count the number of poles or zeroes in a given period parallelo-
gram. We can simplify this calculation by translating the period parallelogram without
rotation until no pole or zero lies on its boundary. This parallelogram is known as a
cell, and the set of poles or zeroes within that cell is called an irreducible set.

1.3. Properties of an elliptic function

THEOREM 1.1. The number of poles of an elliptic function f (z) in any cell is finite.

Proof (Copson, 1935). If there were an infinite number, then the set of these poles 4

would have a limit point. But the limit point of poles is an essential singularity, and so
by definition the function would not be an elliptic function.

THEOREM 1.2. The number of zeroes of an elliptic function f (z) in any cell is finite.

Proof (Whittaker & Watson, 1927). If there were an infinite number, then it would fol- 5

low that the reciprocal of the function would have an infinite number of poles. There-
fore, it would have an essential singularity, and this would also be an essential singu-
larity of the original function. Again, this would mean that the function was not an
elliptic function.

THEOREM 1.3. The sum of the residues of an elliptic function f (z) at its poles in any
cell is zero.

Proof (Copson, 1935). If C is the contour formed by the edges of the cell, then, by the 6

4Copson (1935) 350.
5Whittaker & Watson (1927) 431.
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residue theorem, the sum of the residues of f (z) at its poles within C is

1
2π i

∫
C

f (z) dz.

This is zero as the integrals along opposite sides of C cancel due to the periodicity of
f (z).

THEOREM 1.4. Liouville’s theorem for elliptic functions. An elliptic function f (z)
with no poles in a cell is constant.

Proof (Whittaker & Watson, 1927). If f (z) has no poles inside its cell, then it must be 7

analytic and its absolute value bounded inside or on the boundary of the cell. Hence,
by the periodicity of f (z), it is bounded on all z, and so by Liouville’s theorem for
analytic functions it must be constant. 8

The number of poles of an elliptic function in any cell, counted with multiplicity, is
called the order of the function. This is necessarily at least equal to 2, since an elliptic
function of order 1 would have a single irreducible pole. If this were actually a pole,
its residue would not be zero, and so contradict Theorem 1.3.

THEOREM 1.5. An elliptic function f (z) of order m has m zeroes in each cell.

Proof (Copson, 1935). If f (z) is of order m and has n zeroes in a cell, counted with 9

multiplicity, then n − m is equal to the sum of residues of f ′(z)/ f (z) at its poles in the
cell. But f ′(z) is an elliptic function with the same periods as f (z), so it follows that
f ′(z)/ f (z) is similarly an elliptic function. Therefore, n − m = 0 by Theorem 1.3.

THEOREM 1.6. The sum of the set of irreducible zeroes, counted with multiplicity, of
an elliptic function f (z) is congruent to the sum of the set of irreducible poles, counted
with multiplicity.

Proof (Whittaker & Watson, 1927). For a cell C , it follows from the residue theorem, 10

that the difference between the sums is

1
2π i

∫
C

z f ′(z)
f (z)

dz.

6Copson (1935) 351.
7Whittaker & Watson (1927) 431–432.
8Liouville’s theorem for analytic functions. Let f (z) be any analytic function and let its absolute value

be bounded for all values of z, then f (z) is constant.
This theorem was actually discovered by Augustin Louis Cauchy (1789–1857), but was later falsely at-

tributed to Joseph Liouville (1809–1882) after it appeared in his lectures of 1847.
9Copson (1935) 351.

10Whittaker & Watson (1927) 433.
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If the vertices of C are t , t + ω1, t + ω1 + ω2, t + ω2, then this is equal to

1
2π i

∫ t+ω1

t

{
z f ′(z)
f (z)

−
(z + ω2) f ′(z + ω2)

f (z + ω2)

}
dz

−
1

2π i

∫ t+ω2

t

{
z f ′(z)
f (z)

−
(z + ω1) f ′(z + ω1)

f (z + ω1)

}
dz

=
1

2π i

{
ω1

∫ t+ω2

t

f ′(z)
f (z)

dz − ω2

∫ t+ω1

t

f ′(z)
f (z)

dz
}

=
1

2π i

{
ω1

[
log f (z)

]t+ω2

t
− ω2

[
log f (z)

]t+ω1

t

}
,

by using the periodic properties of f (z) and f ′(z).

Now, f (z) has the same values at t + ω1 and t + ω2 as at t , so it follows that the
values of log f (z) at these points can only differ from the value of log f (z) at t by
integer multiples of 2π i. Therefore, we have

1
2π i

∫
C

z f ′(z)
f (z)

dz = mω1 + nω2.

Hence, the difference between the sums is a period, and we have the result.

THEOREM 1.7. If f (z) and g(z) are elliptic functions with poles at the same points,
and with the same principal parts at these points, then f (z) = g(z) + A, for some
constant A.

Proof (Jones & Singerman, 1987). The function f (z) − g(z) is an elliptic function of 11

order zero, as it has no poles. Therefore, it is constant by Theorem 1.4.

THEOREM 1.8. If f (z) and g(z) are elliptic functions with zeroes and poles of the
same order at the same points, then f (z) = Ag(z), for some constant A.

Proof (Jones & Singerman, 1987). By a similar argument to the previous proof, we 11

have that the function f (z)/g(z) is also an elliptic function of order zero. Therefore,
by again applying Theorem 1.4, it is constant.

11Jones & Singerman (1987) 75–76.
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Chapter 2

Jacobi Elliptic Functions

In the previous chapter, we have seen that the order of an elliptic function is never less
than 2, so in terms of singularities, the simplest elliptic functions are those of order 2.
These can be divided into two classes: those which have a single irreducible double
pole in each cell at which the residue is zero, and those which have two simple poles
in each cell at which the two residues are equal in absolute value, but of opposite sign.
The Jacobi elliptic functions are examples of the latter class.

2.1. Motivation 1

Suppose we have the two integrals

u =

∫ x

0

dt
√

1 − t2
, (2.1)

1
2π =

∫ 1

0
=

dt
√

1 − t2
,

where −1 < x < 1 is real.

If we take the square root to be positive for u between zero and π , then this defines
u as an odd function of x . By inversion of the integral, we have defined z as an odd
function of u. If denote this function by sin u, then (2.1) reduces to the form

u = sin−1 x .

We can define a second function cos u by

cos u =

√
1 − sin2 u.

By taking the square root positive for u between −
1
2π and 1

2π , we have u as an even
function of x . It follows that we have the identity

sin2 u + cos2 u = 1. (2.2)

We can also note that sin 0 = 0 and cos 0 = 1.

Suppose now we consider the derivative of (2.1) with respect to x , which is clearly

du
dx

=
1

√
1 − x2

.

1Bowman (1953) 7–8.
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It follows that
d

du

{
sin u

}
=

√
1 − sin2 u = cos u,

as x = sin u. Moreover, by differentiation of (2.2), we obtain

d
du

{
cos u

}
= − sin u,

Now, we consider the equation

w = sin u1 cos u2 + cos u1 sin u2.

The partial derivatives of w with respect to u1 and u2 are equal, so it follows that
w = f (u1 + u2), where f (u1 + u2) is a function of u1 + u2. Therefore,

f (u1 + u2) = sin u1 cos u2 + cos u1 sin u2.

If we set u2 = 0, then f (u1) = sin u1, and similarly f (u2) = sin u2. Hence, f (u1 +

u2) = sin(u1 + u2) and we obtain an addition formula

sin(u1 + u2) = sin u1 cos u2 + cos u1 sin u2.

By (2.2), we also have

cos(u1 + u2) = cos u1 cos u2 − sin u1 sin u2.

We can also use these two addition formulæ to see that both sin u and cos u are simply
periodic functions with period 2π .

2.2. Definitions of the Jacobi elliptic functions 2

The Jacobi elliptic function sn u is defined by means of the integral

u =

∫ x

0

dt√
(1 − t2)(1 − k2t2)

, (2.3)

for some constant k. Therefore, by inversion of the integral, we have x = sn u. It is
clear that sn 0 = 0.

The functions cn u and dn u are defined by the identities

sn2 u + cn2
= 1, (2.4)

k2 sn2 u + dn2 u = 1. (2.5)

It follows that cn 0 = 1 = dn 0.

Each of the Jacobi elliptic functions depend on a parameter k, called the modulus.
We also have the complementary modulus k′ defined by

k2
+ k′2

= 1.
2Bowman (1953) 8–9.
In the words of Arthur Cayley (1821–1895), sn u is a sort of sine function, and cn u, dn u are sorts of

cosine functions.
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Figure 2.1. Graphs of the real part (a), imaginary part (b) and absolute value (c) of the Jacobi
elliptic function sn(u, k) with modulus k = 0.1.

When emphasizing a particular modulus, we write the three functions as sn(u, k),
cn(u, k) and dn(u, k). An alternative notation uses a parameter m = k2, and so the
functions are denoted sn(u|m), cn(u|m) and dn(u|m).

When k = 0, the functions sn u and cn u degenerate to the circular functions sin u
and cos u, respectively, while dn u degenerates to 1. When k = 1, we have sn u equal
to the hyperbolic function tanh u, while both cn u and dn u are equal to sech u.

2.3. Properties of the Jacobi elliptic functions

THEOREM 2.1. The function sn u is an odd function of u, while cn u and dn u are
even functions of u.

The notation sn u, cn u and dn u was introduced by Christoph Gudermann (1798–1852) in lectures given
in 1838. In his Fundamenta nova theoriæ functionum ellipticarum, Jacobi himself used sin am u, cos am u
and 1 am u. This follows from his definition of an additional function am u which follows by the inversion
of the integral

u =

∫ θ

0

dθ√
1 − k2 sin2 θ

.

A shortened notation to express reciprocals and quotients was invented by James Whitbread Lee Glaisher
(1848–1928) in which the reciprocals are denoted by reversing the orders of the letters of the function to
obtain

ns u = 1/ sn u, nc u = 1/ cn u, nd u = 1/ dn u.

Quotients are denoted by writing in order the first letters of the numerator and denominator functions. Hence,

sc u = sn u/ cn u, sd u = sn u/ dn u, cd u = cn u/ dn u,

cs u = cn u/ sn u, ds u = dn u/ sn u, dc u = dn u/ cn u.

8



Circular functions Jacobi elliptic functions

u =
∫ x

0
dt√
1−t2

u =
∫ x

0
dt√

(1−t2)(1−k2t2)

x = sin u x = sn u
1
2π =

∫ 1
0

dt√
1−t2

K =
∫ 1

0
dt√

(1−t2)(1−k2t2)

cos u = sin( 1
2π − u) cd u = sn(K − u)

sin 1
2π = 1 sn K = 1

sinπ = 0 sn 2K = 0

sin(π + u) = − sin u sn(2K + u) = − sn u

sin(−u) = − sin u sn(−u) = − sn u

Table 2.1. Comparison between the circular functions and the Jacobi elliptic functions.

Proof (Whittaker & Watson, 1927). If we substitute t for −t in (2.3), then if the sign 3

of x is changed, the sign of u is similarly changed. Therefore, sn(−u) = − sn u.

By the identity (2.4), it follows that cn(−u) = ± cn u. As cn u is a one-valued,
then, by the theory of analytic continuation, either the upper sign, or else the lower
sign must always be taken. When u = 0, the positive sign must be taken, so it is this
that is always taken. It follows that cn(−u) = cn u.

By a similar argument, we obtain dn(−u) = − dn u.

THEOREM 2.2. The derivatives of the Jacobi elliptic functions are 4

d
du

{
sn u

}
= cn u dn u,

d
du

{
cn u

}
= − sn u dn u,

d
du

{
dn u

}
= −k2 sn u cn u.

Proof (Bowman, 1953). By differentiation of (2.3), we have 5

du
dx

=
1√

(1 − x2)(1 − k2x2)
,

and, as x = sn u, it follows that

d
du

{
sn u

}
=

√
(1 − sn2 u)(1 − k2 sn2 u) = cn u dn u.

If we next differentiate (2.4), then we have

d
du

{
cn u

}
= − sn u dn u,

3Whittaker & Watson (1927) 493.
4The derivative of am u is dn u.
5Bowman (1953) 9–10.
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and similarly, from (2.5), we obtain

d
du

{
dn u

}
= −k2 sn u cn u.

2.4. The addition formulæ for the Jacobi elliptic functions

A function f (u) is said to possess an algebraic addition formula if there is an identity
between f (u1), f (u2) and f (u1 + u2) of the form

R ( f (u1), f (u2), f (u1 + u2)) = 0,

for all u1 and u2, where R is a non-zero rational function of three variables. For
example,

tan(u1 + u2) =
tan u1 + tan u2

1 − tan u1 tan u2
.

THEOREM 2.3. The addition formulæ for the Jacobi elliptic functions are

sn(u1 + u2) =
sn u1 cn u2 dn u2 + sn u2 cn u1 dn u1

1 − k2 sn2 u1 sn2 u2
, (2.6)

cn(u1 + u2) =
cn u1 cn u2 − sn u1 sn u2 dn u1 dn u2

1 − k2 sn2 u1 sn2 u2
,

dn(u1 + u2) =
dn u1 dn u2 − k2 sn u1 sn u2 cn u1 cn u2

1 − k2 sn2 u1 sn2 u2
.

Proof (Bowman, 1953). We denote s1 = sn u1, s2 = sn u2, c1 = cn u1, c2 = cn u2, 6

7d1 = dn u1 and d2 = dn u2. Let

w =
s1c2 dn u2 + s2c1d1

1 − k2s2
1 s2

2
.

Then, by partial differentiation with respect to u1, and after simplification using (2.4)
and (2.3), we have

dw
du1

=
c1d1c2d2(1 + k2s2

1s2
2)− s1s2(d2

1 d2
2 + k2c2

1c2
2)

(1 − k2s2
1 s2

2)
2

Therefore, dw/du1 is symmetric in u1 and u2, and as w is symmetric, it follows that
dw/du2 is equal to dw/du1. Hence, for a function f (u1 + u2) of u1 + u2, we have
w = f (u1 + u2), and it follows that

f (u1 + u2) =
s1c2d2 + s2c1d1

1 − k2s2
1s2

2
.

Putting u2 = 0 gives f (u1) = s1, while u1 = 0 gives f (u2) = s2. Therefore,

f (u1 + u2) = sn(u1 + u2).

6Bowman (1953) 12–13. See Whittaker & Watson (1927) for an alternative proof.
7The notation s1, s2, . . . is also due to Glaisher.
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Now, by (2.3) and (2.6), we have

cn2(u1 + u2) = 1 − sn2(u1 + u2) =
(1 − k2s2

1 s2
2)− (s1c2d2 + s2c1d1)

2

(1 − k2s2
1s2

2)
2

.

If we express (1 − k2s2
1 s2

2)
2 in the form (c2

1 + s2
1 d2

2 )(c
2
2 + s2

2 d2
1 ), then

cn2(u1 + u2) =
(c1c2 − s1s2d1d2)

2

(1 − k2s2
1 s2

2)
2

.

We then take the square root, and to remove the ambiguity in sign we note that both
of these expressions are one-valued functions of u1 except at isolated poles, so, by the
theory of analytic continuation, either the positive sign, or else the negative sign must
always be taken. By setting u2 = 0, it follows that the positive sign must be taken.

The formula for dn(u1 + u2) follows by a similar argument.

2.5. The constants K and K ′
8

We can define the constant K by 9

K =

∫ 1

0

dt√
(1 − t2)(1 − k2t2)

.

It follows that
sn K = 1, cn K = 0, dn K = k′.

Similarly, we denote the integral∫ 1

0

dt√
(1 − t2)(1 − k′2t2)

=

∫ 1/k

1

dt√
(t2 − 1)(1 − k2t2)

by the symbol K ′. Since

K + iK ′
=

∫ 1/k

0

dt√
(1 − t2)(1 − k2t2)

,

we have

sn(K + iK ′) = 1/k, cn(K + iK ′) = −ik′/k, dn(K + iK ′) = 0. (2.7)

2.6. Periodicity of the Jacobi elliptic functions

By definition of an elliptic function, the Jacobi elliptic functions must be doubly peri-
odic. These periods can be expressed in terms of the constants K and K ′ introduced in
the previous section.

8Whittaker & Watson (1927) 498–499, 501–502.
9The integral K is the complete elliptic integral of the first kind (see Section 4.1).
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THEOREM 2.4. The functions sn u and cn u each have a period 4K , while dn u has a
smaller period 2K .

Proof (Whittaker & Watson, 1927). By Theorem 2.3, we have 10

sn(u + K ) =
sn u cn K dn K + sn K cn u dn u

1 − k2 sn2 u sn2 K
= cd u.

Similarly,
sn(u + K ) = −k′ sd u, dn(u + K ) = k′ nd u.

Hence,

sn(u + 2K ) =
cn(u + K )
dn(u + K )

=
−k′ sd u
k′ nd u

= − sn u,

and it also follows that

cn(u + 2K ) = − cn u, dn(u + 2K ) = dn u.

Finally,
sn(u + 4K ) = sn u, cn(u + 4K ) = cn u.

THEOREM 2.5. The functions sn u and dn u each have a period 4K + 4iK ′, while
cn u has a smaller period 2K + 2iK ′.

Proof (Whittaker & Watson, 1927). By (2.7), we have 11

sn(K + iK ′) = 1/k, cn(K + iK ′) = −ik′/k, dn(K + iK ′) = 0.

Hence, by applying Theorem 2.3, we obtain

sn(u + K + iK ′) =
sn u cn(K + iK ′) dn(K + iK ′)+ sn(K + iK ′) cn u dn u

1 − k2 sn2 u sn2(K + iK ′)

= (1/k) dc u. (2.8)

By the same argument,

cn(u + K + iK ′) = −(ik′/k) nc u, dn(u + K + iK ′) = ik′ sc u.

Following further applications of the same formulæ, we have

sn(u + 2K + 2iK ′) = − sn u, cn(u + 2K + 2iK ′) = cn u,

dn(u + 2K + 2iK ′) = − dn u.

Hence,
sn(u + 4K + 4iK ′) = sn u, dn(u + 4K + 4iK ′) = dn u.

THEOREM 2.6. The functions cn u and dn u each have a period 4iK ′, while sn u has
a smaller period 2iK ′.

12



Proof (Whittaker & Watson, 1927). By using Theorem 2.3 and the result (2.8), we have 12

sn(u + iK ′) = sn(u − K + K + iK ′) = (1/k) dc(u − K )

Hence,
sn(u + iK ′) = (1/k) ns u,

and also
cn(u + iK ′) = −(i/k) ds u, dn(u + iK ′) = −i cs u.

By repeated applications of these formulæ, we have

sn(u + 2iK ′) = sn u, cn(u + 2iK ′) = − cn u, dn(u + 2iK ′) = − dn u,

cn(u + 4iK ′) = cn u, dn(u + 4iK ′) = dn u.

As 4K and 4K ′ are periods of the Jacobi elliptic functions, we refer to K as the
quarter period and K ′ as the complementary quarter period.

2.7. Poles and zeroes of the Jacobi elliptic functions 13

Each of the functions sn u, cn u and dn u have two simple poles and two simple zeroes.
In the case of sn u, the poles are at points congruent to iK ′ or 2K + iK ′ with residues
1/k and −1/k, respectively. It has simple zeroes at points congruent to zero and 2K .
For cn u, we have poles at points congruent to iK ′ or 2K + iK ′, while its zeroes are
at points congruent to K and −K with residues −i/k and −i/k, respectively. Finally,
dn u has poles congruent to iK ′ and −iK with residues −i and i, respectively, and
zeroes congruent to K + iK ′ and K − iK ′.

2.8. The theta functions 14

It is possible to express the Jacobi elliptic functions in terms of quotients of non-elliptic
functions known as theta functions.

10Whittaker & Watson (1927) 500.
11Whittaker & Watson (1927) 502–503.
12Whittaker & Watson (1927) 503.
13Whittaker & Watson (1927) 504–505.
14Whittaker & Watson (1927) 462–490.

The theta functions were first studied by Jacobi in the early nineteenth century. He developed these using
elliptic functions and used purely algebraic methods to derive their properties. However, the first function
considered to be like a theta function is due to Leonhard Euler (1707–1783), who introduced the partition
function

∞∏
n=1

1
1 − xn z

in the first volume of Introductio in Analysin Infinitorum, published in 1748. Euler also obtained properties
of similar products, whose associated series had previously been investigated by Jakob Bernoulli (1654–
1705). Theta functions also appear in La Théorie Analytique de la Chaleur by Jean-Baptiste Joseph Fourier
(1768–1830).
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Suppose τ is a constant complex number whose imaginary part is positive, and let
q = eπ iτ for |q| < 1. Then we define the theta function ϑ4(z, q) by

ϑ4(z, q) = 1 + 2
∞∑

n=1

(−1)nqn2
cos 2nz.

Clearly,
ϑ4(z + π, q) = ϑ4(z, q),

so ϑ4(z, q) is a periodic function of z with period π . Moreover,

ϑ4(z + πτ, q) = q−1e−2izϑ4(z, q).

It follows that we call ϑ4(z, q) a quasi doubly periodic function of z. The effect of
increasing z by π or πτ is the same as multiplying ϑ4(z, q) by 1 or −q−1e−2iz . There-
fore, 1 and −q−1e−2iz are said to be the multipliers associated with the periods π and
πτ , respectively.

Three other theta functions are defined as follows:

ϑ3(z, q) = ϑ4(z +
1
2π, q) = 1 + 2

∞∑
n=1

qn2
cos 2nz,

ϑ1(z, q) = ieiz+ 1
4π iτϑ4(z +

1
2πτ, q) = 2

∞∑
n=0

(−1)nq(n+
1
2 )

2
sin(2n + 1)z,

ϑ2(z, q) = ϑ1(z +
1
2π, q) = 2

∞∑
n=0

q(n+
1
2 )

2
cos(2n + 1)z.

Clearly, ϑ4(z, q) is an odd function of z, while ϑ1(z, q), ϑ2(z, q) and ϑ3(z, q) are even
functions of z.

If we do not need to emphasize the parameter q , we write ϑ(z) in place of ϑ(z, q).
If we wish to alternatively show a dependence on τ , we write ϑ(z|τ). Also we may
replace ϑ(0) by ϑ and ϑ ′(0) by ϑ ′.

THEOREM 2.7. A theta function ϑ(z) has exactly one zero inside each cell.

Proof (Whittaker & Watson, 1927). The function ϑ(z) is analytic in a finite part of the 15

complex plane, so it follows, by the residue theorem, that if C is a cell with corners t ,
t + π , t + π + πτ and t + πτ , then the number of zeroes in this cell is

1
2π i

∫
C

ϑ ′(z)
ϑ(z)

dz.

This integral reduces to
1

2π i

∫ t+π

t
2i dz,

and it follows that
1

2π i

∫
C

ϑ ′(z)
ϑ(z)

dz = 1.

Therefore, ϑ(z) has exactly one simple zero inside C .

15Whittaker & Watson (1927) 465–466.
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Clearly, one zero of ϑ1(z) is z = 0, so it follows that the zeroes of ϑ2(z), ϑ3(z) and
ϑ4(z) are the points congruent to 1

2π , 1
2π +

1
2πτ and 1

2πτ , respectively.

We now define the Jacobi elliptic functions in terms of theta functions. We have

sn(u, k) =
ϑ3ϑ1(u/ϑ2

3 )

ϑ2ϑ4(u/ϑ2
3 )
, (2.9)

cn(u, k) =
ϑ4ϑ2(u/ϑ2

3 )

ϑ2ϑ4(u/ϑ2
3 )
,

dn(u, k) =
ϑ4ϑ3(u/ϑ2

3 )

ϑ3ϑ4(u/ϑ2
3 )
,

where u = zϑ2
3 and k = ϑ2

2/ϑ
2
3 . As we have factors of 1/ϑ2

3 in (2.9), we also consider
the function

2(u) = ϑ4(u/ϑ2
3 |τ).

This was Jacobi’s original notation, and replaces the function ϑ4(z). The periods asso-
ciated with this function are 2K and 2iK ′. The function 2(u + K ) therefore replaces
ϑ3(z), and in place of ϑ1(z) we use the eta function, which is defined by

H(u) = −iq−
1
4 eiπu/2K2(u + iK ′) = ϑ1(u/ϑ2

3 |τ).

Hence, instead of ϑ2(z) we have H(u + K ).

A geometric application of the theta functions appears in On the counting of colored tangles (Zinn-
Justin & Zuber, 2000). A tangle is a knotted structure from which four strings emerge, and it is possible to
formulate the problem of counting coloured such tangles as one of theoretic physics, and then to use matrix
integrals and Feynman diagrams. In the case of two-coloured tangles in which the string makes alternative
under and over crossings with itself, the solution is expressed in terms of theta functions.
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Chapter 3

Weierstrass Elliptic Functions

The Weierstrass elliptic function is a member of the second family of elliptic functions
of order 2, those with a single irreducible double pole in each cell with residue equal
to zero.

3.1. Motivation 1

We first consider the properties of the circular function cosec2 z, which in some ways
can be considered to be the circular analogue of the Weierstrass elliptic function.

We obtain the properties of cosec2 z by the series

f (z) =

∞∑
m=−∞

1
z − mπ

.

This converges absolutely and uniformly except at the points mπ where it has double
poles. Therefore, f (z) is analytic throughout the whole complex plane except at these
points. If we add a multiple of π to z, we have a series whose individual terms are
identical to those occurs in the original series. Since the series is absolutely convergent,
the sum of the series is unchanged. It follows that f (z) is a simply periodic function
with period π .

Now, consider f (z) in the strip where the real part of z is between −
1
2π and 1

2π .
By periodicity, the value of f (z) at any point on the plane is equal to its value at the
corresponding point of the strip. In this strip, f (z) has one singularity at z = 0, and is
bounded as z tends to infinity.

In a domain including the point z = 0, the function

f (z)−
1
z2

It has been claimed that Karl Theodor Wilhelm Weierstrass (1815–1897) wasn’t particularly geomet-
rically minded. Algebraic truths vs. geometric fantasies: Weierstrass’ response to Riemann (Bottazzini,
2002) recounts an argument in which Weierstrass accused Georg Friedrich Bernhard Riemann (1826–1866)
of working with geometric fantasies, whereas he was only interested in algebraic truths. Whether this ex-
plains why there are fewer geometric applications of his elliptic function than that of Jacobi is debatable;
a more obvious reason might be the visualization of the Jacobi elliptic functions as a generalization of the
circular functions of plane trigonometry.

1Whittaker & Watson (1927) 438–439.
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is analytic, and an even function. Therefore, it has the Taylor expansion

f (z)−
1
z2 =

∞∑
n=0

a2nz2n,

when |z| < π . Clearly,

a2n = 2π−2n−2(2n + 1)
∞∑

m=1

m−2n−2,

and it follows that

a0 =
1
3 , a2 = 6π−4

∞∑
m=1

m−4
=

1
15 .

Therefore, for small values of |z|, we have

f (z) = z−2
+

1
3 +

1
15 z2

+ O(z4).

By taking the second derivative, it follows that

f ′′(z) = 6z−4
+

2
15 + O(z2),

and, by squaring, we obtain

f 2(z) = z−4
+

2
3 z−2

+
1

20 + O(z2).

Hence,
f ′′(z)− 6 f 2(z)+ 4 f (z) = O(z2).

So the function f ′′(z)− 6 f 2(z)+ 4 f (z) is analytic at the origin and is periodic. More-
over, it is bounded as z tends to infinity in the strip previously defined, as both f (z) and
f ′(z) are bounded. Hence, f ′′(z) − 6 f 2(z) + 4 f (z) is bounded in the strip, and, as a
consequence of its periodicity, it is bounded in the whole complex plane. Therefore, by
Liouville’s theorem, it is a constant. If we let z tend to zero, we have that the constant 2

is zero. It follows that cosec2 z satisfies the equation

f ′′(z) = 6 f 2(z)− 4 f (z).

3.2. Definition of the Weierstrass elliptic function 3

The Weierstrass elliptic function ℘(z) is defined by the infinite sum

℘(z) =
1
z2 +

∑′

m,n

{
1

(z − mω1 − nω2)2
−

1
(mω1 + nω2)2

}
, (3.1)

where ω1 and ω2 are periods, and the summation is taken over all integer values of m
and n, except for when m and n are both equal to zero.

2See Section 1.3.
3Whittaker & Watson (1927) 433-434.
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Figure 3.1. Graphs of the real part (a), imaginary part (b) and absolute value (c) of the Weier-
strass function ℘(z; g2, g3) with invariants g2 = 5 and g3 = 2.

The series converges absolutely and uniformly with respect to z apart from near its
poles, which are points of � = {mω1 + nω2}. It follows that ℘(z) is analytic on the
whole complex plane except at the points of �, where it has double poles.

Clearly, ℘(z) is dependent on the values of its periods ω1 and ω2. When we wish
to emphasize this, we can write ℘(z|ω1, ω2), or the more commonly used notation
℘(z; g2, g3), where g2 and g3 are constants defined in terms of the periods, and which
will be defined precisely in Section 3.4.

3.3. Periodicity and other properties of the Weierstrass elliptic function

Since the series (3.1) is a uniformly convergent series of analytic functions, we can
differentiate termwise to obtain

℘′(z) = −2
∑
m,n

1
(z − mω1 − nω2)3

.

Having established the definitions of ℘(z) and ℘′(z), we can now investigate two
of their basic properties.

THEOREM 3.1. The function ℘′(z) is an odd function of z, while ℘(z) is an even
function of z.

Proof (Whittaker & Watson, 1927). By the definition of ℘′(z) we have 4

18



℘′(−z) = 2
∑
m,n

1
(z + mω1 + nω2)3

.

Now, the set of points −� is the same as those of �, so the terms of ℘′(z) are iden-
tical as those of −℘′(z), but in a different order. However, as the series is absolutely
convergent, we can rearrange terms to obtain

℘′(−z) = −℘′(z).

Similarly, we have that the terms of the absolutely convergent series∑′

m,n

{
1

(z + mω1 + nω2)2
−

1
(mω1 + nω2)2

}
are the terms of the series∑′

m,n

{
1

(z − mω1 − nω2)2
−

1
(mω1 + nω2)2

}
,

but rearranged. Hence, by uniform convergence it follows that

℘(−z) = ℘(z).

THEOREM 3.2. Both ℘′(z) and ℘(z) are elliptic functions with periods ω1 and ω2.

Proof (Whittaker & Watson, 1927). We have 5

℘′(z + ω1) = −2
∑
m,n

1
(z − mω1 − nω2 + ω1)3

.

The set of points � − ω1 is the same as those of the set � so the terms of this series
are the same as those of ℘′(z), but in a different order. Once more using absolute
convergence, we have

℘′(z + ω1) = ℘′(z). (3.2)

Therefore, ℘′(z) has period ω1. Similarly, it also has period ω2. As ℘′(z) is analytic
except at its poles, it follows that it is an elliptic function.

Now, by integration of (3.2), we obtain

℘(z + ω1) = ℘(z)+ A,

for a constant A. Letting z = −ω1, then, as ℘(z) is an even function, we have A = 0.
Therefore,

℘(z + ω1) = ℘(z),

and by an analogous argument ℘(z +ω2) = ℘(z). Having seen in the previous section
that it is analytic except at its poles, it follows that ℘(z) is an elliptic function.

4Whittaker & Watson (1927) 434–435.
5Whittaker & Watson (1927) 435.
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3.4. A differential equation satisfied by the Weierstrass elliptic function

THEOREM 3.3. The function ℘(z) satisfies the differential equation

℘′2(z) = 4℘3(z)− g2℘(z)− g3,

where the elliptic invariants g2 and g3 are given by

g2 = 60
∑′

m,n

1
(z + mω1 + nω2)4

, g3 = 140
∑′

m,n

1
(z + mω1 + nω2)6

.

Proof (Whittaker & Watson, 1927). We have 6

℘(z)−
1
z2 =

∑′

m,n

{
1

(z − mω1 − nω2)2
−

1
(mω1 + nω2)2

}
is analytic in a region around the origin, and as it is an even function of z, we obtain
the Taylor expansion

℘(z)− z−2
=

1
20 g2z2

+
1
28 g3z4

+ O(z6),

for sufficiently small values of |z|. Therefore,

℘(z) = z−2
+

1
20 g2z2

+
1
28 g3z4

+ O(z6). (3.3)

By differentiation, we have

℘′(z) = −2z−3
+

1
10 g2z +

1
7 g3z3

+ O(z5). (3.4)

From (3.3) and (3.4), it follows that

℘3(z) =
1
z6 +

3
20 g2

1
z2 +

3
28 g3 + O(z2),

℘′2(z) =
4
z6 −

2
5 g2

1
z2 −

4
7 g3 + O(z2).

Hence,
℘′2(z)− 4℘3(z)+ g2℘(z)+ g3 = O(z2).

Now, the left hand side is an elliptic function, analytic at the origin and at all congruent
points. But these points are the only possible singularities of the function, so it is an
elliptic function with no singularities. By Theorem 1.4, it must be constant.

By letting z tend to zero, we have that this constant is zero.

We can also consider the converse statement.

THEOREM 3.4. Given (
dy
dz

)2

= 4y3
− g2 y − g3, (3.5)

6Whittaker & Watson (1927) 436–437.
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and if numbers ω1 and ω2 can be determined such that

g2 = 60
∑′

m,n

1
(z + mω1 + nω2)4

, g3 = 140
∑′

m,n

1
(z + mω1 + nω2)6

.

then the general solution of the differential equation is

y = ℘(z + A),

for a constant A.

Proof (Whittaker & Watson, 1927). If we take a variable u defined by y = ℘(u), an 7

equation which always has solutions, then (3.5) reduces to(
du
dz

)2

= 1.

As ℘(u) is an even function of u, we have y = ℘(z ± A). Without loss of generality,
we can choose the choice of sign to be positive to obtain the result.

3.5. The addition formula for the Weierstrass elliptic function

An important property of the Weierstrass elliptic function is that it has an algebraic
addition formula.

THEOREM 3.5. The addition formula for the Weierstrass elliptic function is∣∣∣∣∣∣
℘(z1) ℘′(z1) 1
℘(z2) ℘′(z2) 1

℘(z1 + z2) −℘′(z1 + z2) 1

∣∣∣∣∣∣ = 0.

Proof (Whittaker & Watson, 1927). We consider the equations 8

℘′(z1) = A℘(z1)+ B, ℘′(z2) = A℘(z2)+ B. (3.6)

These determine A and B in terms of z1 and z2 unless ℘(z1) = ℘(z2). We also
consider the function

℘′(u)− A℘(u)− B.

This has a triple pole at u = 0. By Theorem 1.5 it has exactly three irreducible zeroes.
Moreover, by Theorem 1.6, as u = z1 and u = z2 are two zeroes, then the third
irreducible zero must be congruent to −z1 − z2. Hence, we have −z1 − z2 is a zero of
℘′(u)− A℘(u)− B, and it follows that

℘′(−z1 − z2) = A℘(−z1 − z2)+ B.

The result follows by substituting from (3.6) to eliminate A and B.

7Whittaker & Watson (1927) 437.
A geometric proof by Niels Henrik Abel (1802–1829) of the addition formula for the Weierstrass elliptic

function is described in Section 13.4.
8Whittaker & Watson (1927) 440.
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If we introduce a further variable z3 and set z1 + z2 + z3, then Theorem 3.5 takes
a symmetric form.

THEOREM 3.6. If z1 + z2 + z3 = 0, then the addition formula for the Weierstrass
elliptic function is ∣∣∣∣∣∣

℘(z1) ℘′(z1) 1
℘(z2) ℘′(z2) 1
℘(z3) ℘′(z3) 1

∣∣∣∣∣∣ = 0.

This leads us to consider the following:

THEOREM 3.7. If ℘(z1) = p1, ℘(z2) = p2 and ℘(z3) = p3 and z1 + z2 + z3 = 0,
then the addition formula for the Weierstrass elliptic function is

(p1 + p2 + p3)(4p1 p2 p3 − g3) = (p1 p2 + p2 p3 + p3 p1 +
1
4 g2)

2. (3.7)

Proof (Copson, 1935). From the proof of Theorem 3.5, it is clear that the values of u 9

which cause ℘′(u)− A℘(u)− B to vanish are congruent to one of the points z1, z2 or
z3. Hence, ℘′2(u) − (A℘(u) − B)2 vanishes when u is congruent to any of z1, z2 or
z3, Therefore,

4℘3(u)− A2℘2(u)− (2AB + g2)℘ (u)− (B2
+ g3)

vanishes when ℘(u) is equal to each of ℘(z1), ℘(z2) and ℘(z3), or, in the notation of
the theorem, p1, p2 and p3.

For general values of z1 and z2, the variables p1, p2 and p3 are not equal and so
are roots of

4p3
− A2 p2

− (2AB + g2)p − (B2
+ g3).

Now, the left hand side of (3.7) contains the sum and product of these roots, so, from
the formulæ that link the roots of equations with their coefficients, we have

p1 + p2 + p3 =
1
4 A2, p1 p2 p3 =

1
4 (g3 + B2).

It follows that
(p1 + p2 + p3)(4p1 p2 p3 − g3) =

1
4 A2 B2.

By a similar argument, we have that the right hand side of (3.7) is

(p1 p2 + p2 p3 + p3 p1 +
1
4 g2)

2
=

1
4 A2 B2.

3.6. The constants e1, e2 and e3

If ω3 = −ω1 − ω2, we have three constants e1, e2 and e3 defined by

℘( 1
2ω1) = e1, ℘ ( 1

2ω2) = e2, ℘ ( 1
2ω3) = e3.

THEOREM 3.8. The constants e1, e2 and e3 are mutually distinct and are roots of the
equation

4y3
− g2 y − g3 = 0.
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Proof (Whittaker & Watson, 1927). We consider ℘′( 1
2ω1). Since ℘′(z) is an odd, peri- 10

odic function we have

℘′( 1
2ω1) = −℘′(− 1

2ω1) = −℘′(ω1 −
1
2ω1) = −℘′( 1

2ω1).

Therefore, we have ℘′( 1
2ω1) = 0. Similarly,

℘′( 1
2ω2) = ℘′( 1

2ω3) = 0.

Now, as ℘′(z) is an elliptic function whose only singularities are triple poles at points
congruent to the origin, it has exactly three irreducible zeroes by Theorem 1.5. There-
fore, the only zeroes of ℘′(z) are points congruent to 1

2ω1, 1
2ω2 and 1

2ω3.

Next, we consider ℘(z) − e1. By definition, this vanishes at 1
2ω1, and since

℘′( 1
2ω1) = 0, it has a double zero at 1

2ω1. As ℘(z) has only two irreducible poles,
it follows that the only zeroes of ℘(z)−e1 are congruent to ω1. By the same argument,
the only zeroes of ℘(z)−e2 and ℘(z)−e3 are double poles at points congruent to 1

2ω2

and 1
2ω3, respectively.

If e1 = e2, then ℘(z) − e1 would have a zero at 1
2ω2. But this would not be

congruent to ω1, so e1 6= e2 6= e3.

Now, by Theorem 3.3,

℘′2(z) = 4℘3(z)− g2℘(z)− g3,

and since ℘′(z) vanishes at 1
2ω1, 1

2ω2 and 1
2ω3, it follows that 4℘3(z) − g2℘(z) − g3

vanishes when ℘(z) is equal to each of e1, e2 and e3.

From the formulæ that link the roots of equations with their coefficients, we have
also have the following formulæ:

e1 + e2 + e3 = 0,

e1e2 + e2e3 + e3e1 = −
1
4 g2,

e1e2e3 =
1
4 g3.

3.7. Connection with the Jacobi elliptic functions and the theta functions

If we write 11

y = e3 +
e1 − e3

sn(λu)
,

then it follows that(
dy
du

)2

= 4(e1 − e3)
2λ2 ns2 λu cs2 λu ds2 λu

= 4(e1 − e3)
2λ2 ns2 λu(ns2 λu − 1)(ns2 λu − k2).

9Copson (1935) 362–364.
10Whittaker & Watson (1927) 443–444.
11Whittaker & Watson (1927) 505.
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Hence, if λ2
= e1 − e3 and k2

= (e2 − e3)/(e1 − e3) then y satisfies the equation(
dy
du

)2

= 4y3
− g2 y − g3,

and it follows that

e3 + (e1 − e3) ns2(u
√

e1 − e3) = ℘(u + A),

where A is a constant. Letting u tend to zero, we have that A is a period, and so

℘(u) = e3 + (e1 − e3) ns2(u
√

e1 − e3, k),

where the modulus is given by k2
= (e2 − e3)/(e1 − e3).

We can also express ℘(z) in terms of theta functions in the following way: 12

℘(z) = e1 +

{
ϑ ′

1ϑ2(z)
ϑ1(z)ϑ2

}2

= e2 +

{
ϑ ′

1ϑ3(z)
ϑ1(z)ϑ3

}2

= e3 +

{
ϑ ′

1ϑ4(z)
ϑ1(z)ϑ4

}2

.

This results from the double periodicity of quotients ϑ2
2 (z)/ϑ

2
1 (z), ϑ

3
2 (z)/ϑ

3
1 (z) and

ϑ4
2 (z)/ϑ

4
1 (z), and because they only have a single pole of order 2 within each cell.

3.8. The Weierstrass zeta and sigma functions

The Weierstrass zeta function is defined by the equation

ζ ′(z) = −℘(z),

along with the condition limz→∞ {ζ(z)− 1/z} = 0.

The series for ℘(z)−1/z2 converges uniformly throughout any domain from which
the neighbourhood of the points of �, except the origin, are excluded. Therefore, we
integrate termwise to obtain

ζ(z)−
1
z

= −

∑′

m,n

∫ z

0

{
1

(z − mω1 − nω2)2
−

1
(mω1 + nω2)2

}
dz,

and it follows that

ζ(z) =
1
z

+

∑′

m,n

{
1

z − mω1 − nω2
+

1
mω1 + nω2

+
z

(mω1 + nω2)2

}
.

The function ζ(z) is analytic over the whole complex plane except at simple poles at
all the points of �.

THEOREM 3.9. The Weierstrass zeta function ζ(z) is an odd function of z.
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Proof (Whittaker & Watson, 1927). It is clear that the series for −ζ(−z) is given by 13

−ζ(−z) =
1
z

+

∑′

m,n

{
1

z + mω1 + nω2
−

1
mω1 + nω2

+
z

(mω1 + nω2)2

}
.

This series consists of terms of the series for ζ(z) rearranged in the same way as in the
proof of Theorem 3.1. Therefore,

ζ(−z) = −ζ(z).

The Weierstrass sigma function is defined by the logarithmic derivative

d
dz

{
log σ(z)

}
= ζ(z),

coupled with the condition limz→0 {σ(z)/z} = 1. As the series for ζ(z) converges
uniformly except near the poles of ζ(z), we integrate the series termwise, and, after
taking the exponential of each side, we have

σ(z) = z
∏′

m,n

{(
1 −

z
mω1 + nω2

)
exp

(
z

mω1 + nω2
+

z2

2(mω1 + nω2)2

)}
.

By the absolute convergence of this series, it immediately follows that the product for
σ(z) converges uniformly and absolutely in any bounded domain of values of z.

THEOREM 3.10. The Weierstrass sigma function σ(z) is an odd function of z.

Proof (Whittaker & Watson, 1927). By an analogous argument to the proof of Theo- 14

rem 3.9, we have

−σ(−z) = z
∏′

m,n

{(
1 +

z
mω1 + nω2

)
exp

(
z2

2(mω1 + nω2)2
−

z
mω1 + nω2

)}
.

This series is absolutely convergent and so

σ(−z) = −σ(z).

We can also define three further sigma functions σ1(z), σ2(z) and σ3(z) by

σ1(z) = e−η1z σ(z +
1
2ω1)

σ ( 1
2ω1)

,

σ2(z) = e−η2z σ(z +
1
2ω2)

σ ( 1
2ω2)

,

σ3(z) = e−η3z σ(z +
1
2ω3)

σ ( 1
2ω3)

,

12McKean & Moll (1999) 132.
13Whittaker & Watson (1927) 445.
14Whittaker & Watson (1927) 447.
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where η1, η2 and η3 are defined by ζ(z + ωi ) = ηi + ζ(zi ) for i = 1, 2, 3. Along
with ω(z), these sigma functions can be considered to be analogous to the four theta
functions.

If we continue with the analogy of Section 3.1, we can compare ζ(z) with the function cot z defined by
the series

1
z

+

∞∑′

m=−∞

{
1

z − mπ
+

1
mπ

}
,

as the derivative of − cot z with respect to z is cosec2 z, the function analogous to ℘(z). Similarly, we
compare σ(z) with the function sin z defined by

∞∏′

m=−∞

{
(1 −

z
mπ

)ez/mπ
}
.

The logarithmic derivative of sin z with respect to z is cot z.
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Chapter 4

Elliptic Integrals

An elliptic integral takes the form∫
R(x,

√
G(x)) dx

where G(x) is a either a cubic or quartic polynomial with no multiple root, and R(x, y)
is a rational function of two variables. An alternative definition of the elliptic functions
is that they are the functions obtained by the inversion of an elliptic integral.

4.1. The elliptic integral of the first kind 1

We calculate the derivative of the inverse function sn−1 x , where we take values of this
function to be in the interval from zero to K . Therefore, by putting u = sn−1 x we
have x = sn u, and it follows that

dx
du

= cn u dn u =

√
(1 − x2)(1 − k2x2).

Hence, by integration, we obtain

u =

∫ x

0

dt√
(1 − t2)(1 − k2t2)

.

This is known as the elliptic integral of the first kind. As sn−1 1 = K , we also have

K (k) =

∫ 1

0

dt√
(1 − t2)(1 − k2t2)

,

the complete elliptic integral of the first kind. Similarly as K ′(k) = K (k′), it follows
that

K ′(k) =

∫ 1

0

dt√
(1 − t2)(1 − k′2t2)

,

The appellation elliptic integral is attributed to Giulio Carlo Fagnano (1682–1766). Despite never him-
self carrying out the inversion of such an integral, so important was Fagnano’s work that Jacobi called 23
December 1751 the birthday of elliptic functions. It was on the date that Euler was asked to examine the
collected papers of Fagnano as a referee to his proposed membership of the Berlin Academy.

1Lawden (1989) 50–52.
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or, after a change of variables by s =
√

1 − k′2t2/k, we obtain

K ′(k) =

∫ 1/k

1

ds√
(s2 − 1)(1 − k2s2)

.

If we let t = sinϕ, then the elliptic integral of the first kind takes the form

F(ϕ, k) =

∫ k

0

dϕ√
1 − k2 sin2 ϕ

.

4.2. The elliptic integral of the second kind 2

The elliptic integral of the second kind is defined by∫ x

0

√
1 − k2t2

1 − t2 dt.

If we set t = sinϕ then we have

E(k, ϕ) =

∫ ϕ

0

√
1 − k2 sin2 ϕ dϕ.

Moreover, if we put sn u = t = sinϕ, then we obtain

E(u) =

∫ u

0
dn2 u du.

Since dn2 u is an even function of u with double poles at the points 2mK + (2n +1)iK ,
with residue zero, then it follows that E(u) is an odd function of u with simple poles
at the poles of dn2 u.

Finally, the complete elliptic of the second kind is given by

E =

∫ 1

0

√
1 − k2t2

√
1 − t2

dt,

or alternatively,

E(K ) =

∫ K

0
dn2 u du.

2Whittaker & Watson (1927) 517.
For completeness, the elliptic integral of the third kind is given by∫ x

0

dt

(1 + nt2)
√
(1 − t2)(1 − k2t2)

,

and, with the substitution sn u = t = sinϕ,

5(ϕ, n, k) =

∫ ϕ

0

dϕ

(1 + n sin2 ϕ)
√

1 − k2 sinϕ
=

∫ u

0

du
1 + n sn2 u

= 5(u, n, k).

It was shown by Adrien-Marie Legendre (1752–1822) that any elliptic integral can, by suitable linear trans-
formations and reduction formulæ, be expressed as the sum of a finite number of elliptic integrals of the first,
second and third kinds. Hence, these three integrals are known as Legendre forms.
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4.3. The addition formula for the elliptic integral of the second kind

In common with the Jacobi and Weierstrass elliptic functions, the elliptic integral of
the second kind satisfies an algebraic addition formula.

THEOREM 4.1. The addition formula for the elliptic integral of the second kind is

E(u1 + u2) = E(u1)+ E(u2)− k2 sn u1 sn u2 sn(u1 + u2).

Proof using Jacobi elliptic functions (Bowman, 1953). Suppose we have two variables 3

x and y. From the addition formula for the Jacobi elliptic function dn x (Theorem 2.3),
and as cn x and dn x are even functions, we have

dn(x + y)+ dn(x − y) =
2 dn x dn y

1 − k2 sn2 x sn2 y
,

dn(x + y)− dn(x − y) =
−2k2 sn x sn y cn x cn y

1 − k2 sn2 x sn2 y
.

Multiplying these gives us

dn2(x + y)− dn2(x − y) =
−4k2 sn x sn y cn x cn y dn x dn y

(1 − k2 sn2 x sn2 y)2
,

and, by integration with respect to y, it follows that

E(x + y)+ E(x − y) = Cx −
2 sn x cn x dn x

sn2 x(1 − k2 sn2 x sn2 y)
, (4.1)

with Cx depending only on x . If y = x , we have

E(2x) = Cx −
2 sn x cn x dn x

sn2 x(1 − k2 sn4 x)
,

and so, by subtracting this from (4.1), we obtain

E(x + y)+ E(x − y)− E(2x) =

{
2k2 sn x cn x dn x

1 − k2 sn4 x

} {
sn2 x − sn2 y

1 − k2 sn2 x sn2 y

}
.

Now, once more using Theorem 2.3, and as sn x is an odd function, it follows that

sn(x + y) sn(x − y) =
sn2 x − sn2 y

1 − k2 sn2 x sn2 y
. (4.2)

Similarly,

sn 2x =
2 sn x cn x dn x

1 − k2 sn4 x
. (4.3)

Hence, by (4.2) and (4.3), we have

E(x + y)+ E(x − y)− E(2x) = k2 sn 2x sn(x + y) sn(x − y).

If we let u1 = x + y and u2 = x − y, then the result follows.

29



Proof using theta functions (Whittaker & Watson, 1927). Consider the derivative 4

5
d

du

{
2′(u)
2(u)

}
. (4.4)

It is a doubly periodic function of u with double poles at the zeroes of 2(u). So, for a
constant A, we have

dn2
−A

d
du

{
2′(u)
2(u)

}
is a doubly periodic function of u with periods 2K and 2iK , and with only a single
simple pole in any cell. Therefore, it is equal to a constant, which we can write as
E/K .

To calculate A, we compare the principal parts of dn2 u and the derivative in (4.4).
At iK ′ the principal part of dn2 u is −(u − iK ′)−2. The residue of 2′(u)/2(u) at this
pole is 1, so the principal part of (4.4) is −(u − iK ′)−2. Hence, A = 1, and it follows
that

dn2 u =
d

du

{
2′(u)
2(u)

+
E
K

}
.

By integration, we have

E(u) =
2′(u)
2(u)

+
E
K

u, (4.5)

as 2′(0) = 0.

Now, consider the function

f (u1) =
2′(u1 + u2)

2(u1 + u2)
−
2′(u1)

2(u1)
−
2′(u2)

2(u2)
+ k2 sn u1 sn u2 sn(u1 + u2)

as a function of u1. It is doubly periodic with periods 2K and 2iK , and with simple
poles congruent to iK ′ and iK ′

− u2. The residue of the first two terms of f (u1) at iK ′

is −1, while the residue of sn u1 sn u2 sn(u1 + u2) is (1/k) sn u2 sn(iK ′
+ u2) = 1/k2.

Therefore, the function f (u1) is doubly periodic and has no poles at points congru-
ent to iK ′ or, by a similar argument, at points congruent to iK ′

− u2. So, by Liouville’s
theorem (Theorem 1.4), it is constant. If we put u1 = 0, then the constant is zero, and
by (4.5), we have the result.

4.4. The integral formula for the Weierstrass elliptic function 6

We consider the equation

z =

∫
∞

u

dt√
4t3 − g2t − g3

, (4.6)

3Bowman (1953) 22–23.
4Whittaker & Watson (1927) 517–519.
5The function 2(u) is defined in Section 2.8.
6Whittaker & Watson (1927) 437–438.
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which determines z in terms of u. The path of integration may be chosen to be any
curve not passing through a zero of 4t3

− g2t − g3. After differentiation, we have(
du
dz

)2

= 4u3
− g2u − g3,

and it follows, from Section 3.4, that

u = ℘(z + A),

for a constant A.

Now, if we let u tend to infinity, then z tends to zero, as the integral converges.
Therefore, A is a pole of the function ℘(z). It follows that u = ℘(z), and that (4.6) is
equivalent to u = ℘(z). Therefore, we can write

℘−1(u) =

∫
∞

u

dt√
4t3 − g2t − g3

.

It can be proven that any elliptic integral can be reduced to the form∫
R(x, y) dx,

where y2
= 4x3

− g2x − g3. Elliptic integrals written in this form are said to be in
Weierstrass form.
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Part II

Applications of the Jacobi Elliptic
Functions
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Chapter 5

Greenhill’s Pendulums

When a pendulum swings through a finite angle about a horizontal axis,
the determination of the motion introduces the Elliptic Functions in such
an elementary and straightforward manner, that we may take the elliptic
functions as defined by a pendulum motion, and begin the investigation of
their use and theory by their application to this problem.

SIR GEORGE GREENHILL

A simple pendulum consists of particle suspended by a light wire moving freely in
a vertical plane under the force of gravity. The interval of time for each complete
oscillation, its period, is constant. This period may be increased by increasing the
length of the string, but a change in the mass of the particle leaves the period unaffected.
If the strength of the gravitational force increases then the pendulum swings faster, and
so has a shorter period.

5.1. The simple pendulum 1

We consider a simple pendulum O P oscillating about a horizontal axis O A, as de-
scribed by Figure 5.1. We suppose that the particle is of mass m and is being acted
upon by a gravitational force mg. We denote by ma2 the moment of the pendulum
about the horizontal axis through P , such that m(h2

+ a2) is the moment about the
parallel axis through O .

Now, if at time t , the line O P makes an angle θ with O A, and if the pendulum is
considered to be vertical at t = 0, then the equation of motion of the pendulum that

Sir Alfred George Greenhill (1847–1927) had somewhat of an obsession with pendulums. In his obituary
in The Times, a visitor to his lodgings described his walls festooned with every variety of pendulum, simple or
compound. Greenhill was an applied mathematician, with a strong interest in military applications, and so it
is perhaps unsurprising that The Applications of Elliptic Functions (Greenhill, 1892) is so strongly based on
this mechanical viewpoint. Srinivasa Aiyangar Ramanujan (1887–1920) is said to have learned much of his
mathematics from Greenhill’s book. In a review of his Collected Papers appearing in the The Mathematical
Gazette (Littlewood, 1929), John Edensor Littlewood (1885–1977) wrote of Ramanujan

Above all, he was totally ignorant of Cauchy’s theorem and complex function-theory. (This
may seem difficult to reconcile with his complete knowledge of elliptic functions. A suffi-
cient, and I think a necessary, explanation would be that Greenhill’s very odd and individual
Elliptic Functions was his text-book).

1Greenhill (1892) 1–5.
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Figure 5.1. A simple pendulum.

follows by taking moments about O is

m(h2
+ a2)θ̈ = −mgh sin θ,

where θ̈ is the second derivative of θ with respect to time t . Therefore,{
h +

a2

h

}
θ̈ = −g sin θ,

and it follows, by making the substitution h + a2/h = l, that

l θ̈ = −g sin θ.

Suppose we denote the angle of an oscillation between B and B ′ by 2α, and take this
angle to be large. It follows that θ̇ = 0 when θ = α, and by letting g/ l = ω2, we have

θ̇2
= 4ω2(sin2 1

2α − sin2 1
2θ). (5.1)

Hence,

ωt =

∫ θ

0

d 1
2θ√

sin2 1
2α − sin2 1

2θ
.

This is an elliptic integral of the first kind, and we reduce it to the standard form by
letting

sin 1
2θ = sin 1

2α sinϕ,

where ϕ corresponds to the angle 6 AD P . Now,

sin2 1
2α − sin2 1

2θ = sin2 1
2α cos2 ϕ,

and

d 1
2θ =

sin 1
2α cosϕ dϕ√

1 − sin2 1
2α sin2 ϕ

,

so it follows that

ωt =

∫ ϕ

0

dϕ√
1 − sin2 1

2α sin2 ϕ
.
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Now, if we replace sin 1
2α by k, then we have the elliptic integral of the first kind

F(ϕ, k) =

∫ ϕ

0

dϕ√
1 − k2 sinϕ

,

where k is the modulus, and ϕ the amplitude. Therefore, we have

k = AD/AB.

It follows that we can define the Jacobi elliptic functions by

ϕ = amωt, cosϕ = cnωt, sinϕ = snωt, ϕ̇ = ω dnωt.

5.2. The period of the pendulum 2

The period T of the pendulum is the time taken by the pendulum to oscillate between
B and B ′ and then back to B. It follows that the quarter period 1

4 T is the time of motion
of P from A to B. As t increases from zero to 1

4 T , then θ increases from zero to α,
and ϕ from zero to 1

2π , so that ωt increases from zero to K , where K is the complete
elliptic integral of the first kind, defined by

K =

∫ 1
2π

0

dϕ√
1 − k2 sin2 ϕ

.

Hence, this value K is the quarter period of the Jacobi elliptic functions.

Now, k = sin 1
2α, so in a similar way we let k′

= cos 1
2α, thus defining the comple-

mentary modulus. It follows that we have

k2
+ k′2

= 1,

and a complementary quarter period K ′.

5.3. The pendulum just reaches its highest position 3

As α increases from zero to π , the modulus k increases from zero to 1, while the quarter
period increases from 1

2π to infinity.

In the case k = 1, the pendulum has just sufficient velocity to carry it to its highest
position O D. However, this will take an infinite amount of time.

If we set α = π , corresponding to 6 AD P , in (5.1), then we have

θ̇2
= 4ω2 cos 1

2θ,

and it follows that

ωt =

∫ θ

0
sec 1

2θ d 1
2θ.

2Greenhill (1892) 8–9.
3Greenhill (1892) 13–14.
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If we let 1
2θ = ϕ, then

snϕ = tanhωt, cosϕ = sechωt, ϕ̇ = 2ω sechωt.

Hence, when k = 1, the Jacobi elliptic functions degenerate to hyperbolic functions,
namely

sinωt = tanhωt, cnωt = dnωt = sechωt.

5.4. The pendulum makes complete revolutions 4

The situation in the previous section corresponds to the pendulum having an angular
velocity ω =

√
g/ l at its lowest position, and as it would just reach its highest posi-

tion, it follows that if ω is increased further, then the pendulum will make complete
revolutions.

If we again let 1
2θ = ϕ, equivalent to 6 AD P , then we have

l2ϕ̇2
= g(R − l sin2 ϕ).

where R is the radius of the circle traced out by the particle. It follows that

ϕ̇2
=

gR
l2

{
1 −

l
R

sin2 ϕ

}
.

By putting k2
= l/R and ω2

= g/ l, we have

ϕ̇2
=
ω2

k2 (1 − k2 sin2 ϕ),

and, by integration, we obtain

ωt
k

=

∫ t

0

dt√
1 − k2 sin2 ϕ

.

Therefore,

ϕ = am(ωt/k), sinϕ = sn(ωt/k), cosϕ = cn(ωt/k), ϕ̇ = 2(ω/k) dn(ωt/k).

4Greenhill (1892) 18.
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Chapter 6

Halphen’s Circles and Poncelet’s
Polygons

As illustrated in Figure 6.1, we consider a circle S and a point P inside that circle. If
we draw chords through that point and consider segments of these with length inversely
proportional to the square root of the total length of the chord, then we obtain a closed,
convex curve C that will allow us to define the Jacobi elliptic functions.

6.1. A circle and a closed curve 1

We denote the endpoints of one of the chords by M and M ′, and let N and N ′ be the
points of intersection of this chord with C . These are symmetric about P . We also
have the maximum diameter N0 N ′

0 of C corresponding to the chord M1 M ′

1, and the
minimum diameter of C corresponding to the chord M1 M ′

1.

If we consider a moving line P N , then we define the angle between this and its
initial position P N0 to be increasingly positive as it moves anti-clockwise about the
circle S, and negative if it moves in the opposite direction. Similarly, we take the
area enclosed by the section of C limited by P N and P N0 to be positive if the angles
between the two lines is positive, and negative otherwise. If the position of P N as it
moves around S completes a full circle, we continue to add to the area in the obvious
way to obtain that the area is a function taking values on the whole real line.

Now, let R be the radius of S, and δ the distance O P from the centre of S to the

Georges-Henri Halphen (1844–1889) was a soldier in the French army, reaching the rank of Commander.
He was conferred the title Chevalier de la Legion d’Honneur after the battle of Pont-Noyelles. Much of
Halphen’s work in mathematics was considered to be ahead of its time, and so he did not initially receive
recognition from his peers. However, he was later elected to l’Académie des Sciences de Paris. Despite his
relatively short life, and his primary career in the military, Halphen was a prolific author, his Œuvres being
published in four volumes totaling almost 2500 pages. His treatment of Poncelet’s poristic polygons appears
predominantly in the second volume of his work Traité des fonctions elliptiques et de applications (Halphen,
1886), a series that was sadly left incomplete by his premature death. Greenhill was particularly influenced
by Halphen. In an obituary of Greenhill in the Journal of the London Mathematical Society (Love, 1928) it
was claimed that

At a later date, when Halphen’s Traité des fonctions elliptiques was published, he devoured
it avidly, and made it his constant companion, or, so to say, his bible.

1Halphen (1886) 1 1–4.
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Figure 6.1. A circle and a closed curve.

point P . It follows that

P N = l

√
2(R + δ)

M M ′
,

for an arbitrary length l. Suppose we define the argument u by

u =
area N0 P N

l2 ,

and define ϕ to be 1
2
6 M0 O M . It follows that ϕ is a function of u, which we denote by

1
2
6 M0 O M = ϕ = am u.

This is the amplitude of u.

Suppose we denote the ratio of the total area enclosed by the C and l2 by 2K , then
it follows from the definition of the amplitude that

am 0 = 0, am K =
1
2π, am 2K = π,

am(2K + u) = π + am u, am(−u) = − am u.

6.2. Eccentricity of the curve 2

When the point P is chosen such that it coincides with the centre of the circle S, then
the curve C reduces to a circle with radius l. Therefore, the function am u is simply
equal to u. In general am u differs from u in proportion to the eccentricity of C . This
eccentricity is the modulus k defined by

k =
2
√

Rδ
R + δ

.

Similarly, we have the complementary modulus

k′
=

R − δ

R + δ
.

Clearly, it follows that k2
+ k′2

= 1, and that k and k′ take values in the interval from
zero to 1.

2Halphen (1886) 1 3–4.
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6.3. The Jacobi elliptic functions 3

We can define the Jacobi elliptic functions by the sine and cosine of am u, and by the
distance of the point P from M which corresponds to the argument u on the circle S.
It follows that we have

sn u = sin am u, cn u = cos am u, dn u =
P M
P M0

=
P M

R + δ
.

From the properties of the circular functions sin θ and cos θ , it follows that sn u and
cn u clearly take values between −1 and 1 and satisfy the identity

sn2 u + cn2 u = 1. (6.1)

The function dn u is, by definition, always positive, and its maximum value is 1, cor-
responding to the line P M0, while its minimum corresponds to P M ′

0 and is equal to
k′.

Now, the angle 6 P M0 M is equal to 1
2π − ϕ, and its cosine is equal to sn u.

Moreover, the length of the chord M0 M can be expressed as 2R sinϕ, or equivalently
2R sn u.

By the cosine formula of plane trigonometry we have 4

P M2
= P M2

0 + M M0 − 2P M0.M M0 cos 6 P M0 M.

Hence,

dn2 u = 1 −
4Rδ

(R + δ)2
sn2 u,

and, from the definition of the modulus, we have

dn2 u + k2 sn2 u = 1. (6.2)

Eliminating sn2 u from (6.1) and (6.2), we have

dn2 u − k2 cn u = k′2.

6.4. Quarter and half periods 5

From Figure 6.1, we immediately have

dn 1
2 K =

C M1

C M0
=

√
R2 − δ2

R + δ
=

√
R − δ

R + δ
=

√
k′,

and it follows from (6.2) and (6.2) that

sn 1
2 K =

1
√

1 + k′
, cn 1

2 K =

√
k′

1 + k′
.

3Halphen (1886) 1 4–5.
4The cosine formula. If a, b and c are the sides of a plane triangle, and α, β and γ are their opposite

angles, then
c2

= a2
+ b2

− 2ab cosα.
A further discussion of this can be found in Section 9.1.

5Halphen (1886) 1 6–7.
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Now, by the symmetry of the curve C , all lines passing through its centre P divide the
area enclosed by this curve into two equal parts. If u is the argument corresponding to
a point N on C . then the point N ′ corresponds to the argument u + K . As P M.P M ′

=

R2
− δ2, we have

(R + δ)2 dn u dn(u + K ) = R2
− δ2,

and from the definition of k′, we obtain

dn(u + K ) = k′ nd u.

On the triangle P M0 M , we have that the angle at M0 is 1
2π − ϕ and its sine is cn u.

Moreover, the angle M is equal to the half angle measured by the arc M0 M ′ on the
circle. Therefore, the amplitude corresponding to the point N ′ is am(u + K ). Now, the
sine of the angle at M is sn(u + K ), and so we have

P M
P M0

=
cn u

sn(u + K )
.

By definition, the left hand side is equal to dn u, and it simply follows that

sn(u + K ) = cd u.

Replacing u by u + K , we obtain

cn(u + K ) = −k′ sd u.

Similarly, by substituting −u in place of u, we have 6

dn(K − u) = k′ nd u, sn(K − u) = cd u, cn(K − u) = k′ sd u.

6.5. Derivatives of the Jacobi elliptic functions 7

Suppose θ is the angle of the variable line P N with the initial line P N0. The derivative
with respect to θ of the area bounded by these lines and the curve C is 1

2 P N 2. From
the definitions of u and P N , we have

du
dθ

=
R + δ

M M ′
.

Now, given ϕ and ϕ′, the half angles 1
2
6 M0 O M and 1

2
6 M0 O M ′. We obtain from the

properties of the circle,
θ =

1
2 (2ϕ + 2ϕ′

− π).

Therefore, it follows that
dθ = dϕ + dϕ′.

Suppose that we have a second line P N1 which intersects S at M1 and M ′

1, then we
obtain

M M1

M ′M ′

1
=

P M
P M ′

1
.

6Jacobi referred to K − u as the complementary argument, and its amplitude as the coamplitude of u,
denoted coam u. Similarly he adopted the notation sn(K − u) = sin coam u, cn(K − u) = cos coam u and
dn(K − u) = 1 coam u.

7Halphen (1886) 1 7–9.
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Figure 6.2. A theorem of Jacobi.

If M1 is infinitely close to M , then it follows that

dϕ
dϕ′

=
P M
P M ′

,

dϕ + dϕ′

dϕ
=

M M ′

P M
=

M M ′

(R + δ) dn u
.

But
du

dϕ + dϕ′
=

R + δ

M M ′
,

so by the chain rule, and by replacing ϕ with am u, we have

d
du

{
am u

}
= dn u.

It follows from the derivatives of sin θ and cos θ that

d
du

{
sn u

}
= cn u dn u,

d
du

{
cn u

}
= − sn u dn u,

and by application of (6.2) that

d
du

{
dn u

}
= −k2 sn u cn u.

6.6. A theorem of Jacobi 8

We consider a circle U inside a second circle S, with radius passing through the point
P . On U , we take the tangent from a variable point T . This moving tangent intersects
S at a point M corresponding to T , as shown in Figure 6.2.

Now, let T0 be the initial point of T , and corresponding to M0. Then we have

T M
T0 M0

=
P M
P M0

= dn u.

8Halphen (1886) 1 10–13.
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If we construct a curve C in the same way as in the preceding sections, then we have
the length

P N = l

√
P M0

M M ′
.

Denoting by M ′′ the second point of intersection of T M with S, and taking the length
T Q on the tangent T M given by

T Q = l

√
2T0 M0

M M ′′
,

then the point Q traces out a closed convex curve D exterior to the circle U .

We now consider the area between D and U , limited by the initial tangent T0 Q0 and
the tangent T Q moving around the circle. Using the same conventions as before, this
new area takes values on the whole real line. We can show that this area is equivalent
to that enclosed by the earlier curve C and the lines P N M and P N0 M0.

We define the argument u1 by

u1 =
area Q0T0T Q

l2 ,

and let θ1 be the angle between T M and P M0. The derivative of this new area with
respect to θ1 is 1

2 T Q2. Therefore,

du1

dθ1
=

T M0

M M ′′
.

If we denote the angles 6 M O M0 and 6 M ′′O M0 by 2ϕ and 2ϕ′′, then we have

dθ1 = dϕ + dϕ′′,
dϕ
dϕ′′

=
T M
T M ′′

,
dθ1

dϕ
=

M M ′′

T M
.

It follows that
dϕ
du1

=
T M

T0 M0
= dn u.

As we have
dϕ
du

= dn u,

then
du1

du
= 1,

and u1 = u.

Now, let M ′′T ′′ be a second tangent to the circle U . Its point of contact T ′′ cor-
responds to M ′′ on the outer circle S. But the tangents M ′′T and M ′′T ′′ are equal.
Therefore, as

dϕ
dϕ′′

=
T M
T M ′′

,

we obtain
dϕ

T M
=

dϕ′′

T ′′M ′′
.
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Figure 6.3. Poristic triangles.

Letting u′′ be the argument corresponding to M ′′ in an analogous way to u correspond-
ing to M , it follows that

dϕ
T M

=
du

T0 M0
,

dϕ′′

T ′′M ′′
=

du′′

T0 M0
.

Hence, du = du′′.

In the case of the circle reducing to the point P , then M ′′ is replaced by M ′, and so
we have du = du′. As a result of the symmetry of C , we obtain u′

= u + K .

The difference u′′
− u is also constant, but it is not equal to K . If we consider

the position of the initial tangent M0T0 M ′′

0 , then the constant is the argument u′′

0 corre-
sponding to the point M ′′

0 . Therefore, we have the following result of Jacobi:

THEOREM 6.1. Let U be a circle in the interior of a second circle S, and let P be a
point not lying on the radical axis. If we draw a variable chord M M ′′ tangent to the 9

circle U, then the difference between the arguments u and u′′ corresponding to M and
M ′′ is constant.

6.7. Poncelet’s poristic polygons 10

We consider the triangle M M1 M2 shown in Figure 6.3, which is inscribed in a circle
S and circumscribed around a circle U . The arguments of these three vertices, taken
successively, are u, u + u′′

0 and u + 2u′′

0 . As the chord M2 M is tangent to the circle
U , the area enclosed by the curve is completely described, and so we have that the
argument of the point M corresponds to the arguments

u + 2K , u + 3u′′

0.

Therefore,
u′′

0 =
2
3 K .

9If O is the centre of a circle of radius r , and if Q is any point, then O P2
− r2 is called the power of Q

with respect to the circle. Moreover, the locus of a point Q which moves so that its powers with respect to
two circles are equal is called the radical axis of the circle.

10Halphen (1886) 1 3–4 and Halphen (1886) 2 367–412. See also Poncelet (1865). Greenhill (1892)
derives Poncelet’s porism using the properties of a simple pendulum.
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Figure 6.4. Poristic hexagons.

It follows that the circle U is determined by the condition that the point M ′′

0 corresponds
to the argument 2

3 K . Hence, each point M on S is a vertex of a triangle inscribed in S
and circumscribed around U .

Now, instead of a triangle, suppose we have a polygon with p sides, inscribed in
S and circumscribed around U . In this case, we may also have that the polygon is a
star polygon formed by connecting with straight lines every qth point out of the p. It
follows that for a convex polygon we would have q = 1. Therefore, if u is the argument
of the first vertex, then in a similar way to the triangle, we have equivalent expressions

u + 2q K , u + pu′′

0,

and we obtain
u′′

0 =
2q K

p
.

This allows us to state a result discovered by Poncelet.

THEOREM 6.2. Poncelet’s porism. Given two circles, one inscribed in and the other
circumscribed around a closed polygon, then there exists an infinite number of poly-
gons with the same number of sides, circumscribed around the first circle, and inscribed
in the other.

Like Halphen, Jean-Victor Poncelet (1788–1867), fought in the French army, though as an engineer, and
was part of Napoléon’s ill-fated march on Russia in 1812. Having been abandoned as dead after the Battle of
Krasnoy, he was imprisoned for two years. During this time, Poncelet studied projective geometry, and wrote
his first book Applications d’analyse et de la géométrie. This work was originally intended as an introduction
for his most famous work Traité des propriétés projectives des figures (Poncelet, 1865), however, in common
with all his works, it soon expanded to fill two full volumes with numerous diagrams. Although one of the
founders of modern projective geometry, Poncelet spent much of his life concerned with mechanical and,
naturally, military applications of mathematics, and proposed improvements to turbines and water wheels.
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Chapter 7

Fagnano’s Ellipses

An ellipse is a closed curve formed from the intersection of a circular cone and a plane
not parallel to the base of the cone. It can also be considered to be the path of a point
moving in a plane such that the ratio of its distances from a fixed point, the focus, and
a fixed line, the directrix, is a constant less than one. As such a path has the same
properties with respect to a second fixed point and a second fixed line, ellipses are
said to have two foci and two directrices. The ratio of the distances is known as the
eccentricity. We take the ellipse to be represented in general by the equation

x2

a2 +
y2

b2 = 1,

where a and b are its axes. An ellipse is symmetric about both its axes, and, of course,
if the axes are equal, we have a circle.

7.1. Fagnano’s theorem on arcs of an ellipse

In the case of the circle it is easy to construct an arc whose length is equal to the sum of
the lengths of two other arcs of the same circle. This is linked to the ability to express
sin(θ1 + θ2) in terms of sin θ1 and sin θ2 by

sin(θ1 + θ2) = sin θ1

√
1 − sin2 θ2 + sin θ2

√
sin2 θ1.

In Section 4.3, we have seen that there exists an addition formula for the elliptic integral
of the second kind, and it is in terms of this that the arc length of an ellipse is expressed.

Fagnano was considered a gifted child, and by 14 was studying theology and philosophy at the college of
Clementine in Rome. While he was there he assiduously avoided mathematics despite the encouragement of
mathematician Quateroni. However, while studying the work De la recherche de la vérité of the philosopher
and mathematician Nicolas Malebranche (1638–1715), Fagnano recognized the need to study mathematics,
and abandoned philosophy.

In 1743, when it was feared that the dome of St. Peter’s Basilica in Rome was in danger of collapse,
Fagnano was appointed as the engineer and architect tasked with stabilizing its structure. In reward of his
efforts, Pope Benedict XIV commissioned the publication of Fagnano’s works, which first appeared in 1750.

Fagnano is buried in Senigallia on the Adriatic coast of Italy, north of Ancona. His tombstone begins with
the words

Veritas Deo ∞ gloria...

In recognition of his most famous works, there is a portrait of Fagnano in the town hall of Senigallia. In
one hand he holds a lemniscate.
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Figure 7.1. Fagnano’s theorem on arcs of an ellipse.

THEOREM 7.1. Fagnano’s theorem. If P1 = (x1, y1) and P2 = (x2, y2) are two
points on the ellipse

x2

a2 +
y2

b2 = 1,

whose eccentric angles ϕ1, ϕ2 are such that

tanϕ1 tanϕ2 =
b
a
, (7.1)

then

arc B P1 + arc B P2 − arc B A =
k2x1x2

a
.

Proof (Bowman, 1953). We consider an ellipse with eccentricity k and parameterize 1

the points P1, P2 by

x1 = a sn u, y1 = b cn u, x2 = a sn v, y2 = b cn v, (7.2)

where
sn u = sinϕ1, sn v = sinϕ2. (7.3)

Now,
sn(u + K ) = cd u, cn(u + K ) = −k′ sd u.

Hence, if we have u + v = K , then

sn u = cd v, cn u = k′ sd v.

Now, k′
= b/a, so it follows that

bu = a cs v.

Hence,
sc u sc v = a/b.

But, by applying (7.3), it follows that

tanϕ1 tanϕ2 = a/b.

Therefore, the case u + v = K is equivalent to (7.1).

1Bowman (1953) 27.
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Now, by (7.2), we have

dx
du

= a cn u dn u,
dy
du

= −b sn u dn u.

Therefore,

dx2
+ dy2

= (a2 cn2 u dn2 u + b2 sn2 u dn2 u) du = a2 dn2 u du,

and, after integration, it follows that

arc B P1 =

∫ u

0

√
dx2 + dy2 = a

∫ u

0
dn2 u du = aE(u). (7.4)

Similarly,
arc B P2 = aE(v), (7.5)

and as sin π
2 = 1 = sn K ,

arc B A = aE(K ). (7.6)

Hence,
arc B P1 + arc B P2 − arc B A = aE(u)+ aE(v)− aE(K ).

We have u + v = K , so

arc B P1 + arc B P2 − arc B A = a {E(u)+ E(v)− E(u + v)} .

Applying the addition formula for E(u), it follows that

arc B P1 + arc B P2 − arc B A = ak2 sn u sn v sn(u + v).

But u + v = K and sn K = 1, so

arc B P + arc B P ′
− arc B A′

= ak2 sn u sn v.

By the parameterizations in (7.2) we have the result.

7.2. Fagnano’s point

THEOREM 7.2. If the points P1 and P2 coincide in Fagnano’s point F = (x, y), then

arc B F − arc AF = a − b.

Proof (Lawden, 1989). Considering the same ellipse, and parameterizing F by (7.2), 2

then clearly this point satisfies

x = a sn 1
2 K , y = b cn 1

2 K . (7.7)

By the duplication formulæ for cn u, dn u, we have

1 − cn 2u
1 + dn 2u

= sn2 u.

2Lawden (1989) 99.
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Figure 7.2. Rolling an ellipse.

It follows that

sn 1
2 K =

√
1 − cn K
1 + dn K

=

√
1

1 + k′
, cn 1

2 K =

√
k′

1 + k′
. (7.8)

Hence, the coordinates of F are

x =

√
a3

a + b
, y =

√
b3

a + b
.

We now apply Theorem 7.1 and (7.7), and obtain

arc B F − arc AF = arc B F + arc B F − arc B A =
k2x2

a
= k2a sn2 1

2 K .

As k2
+ k′2

= 1 and k′
= b/a, then, by applying (7.8), this reduces to the result.

7.3. Rolling an ellipse on a curve

THEOREM 7.3. The curve on which the ellipse

x2

a2 +
y2

b2 = 1

can roll such that its centre describes a straight line is

y = a dn(x/b, k),

where k =
√

a2 − b2/a.

Proof (Greenhill, 1892). Consider the ellipse illustrated in Figure 7.2. The semiaxes 3

of this ellipse are A1 A2 = a and B1 B2 = b. Let M be the centre of the ellipse and

3Greenhill (1892) 71–73.
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denote the straight line that it describes to be Ox . If P is the point of contact of the
ellipse with the curve, then we must have that M lies vertically above P . Let M P = r
be the line joining these two points. If we also define θ to be the angle between M P
and M A as shown, then we have that the polar equation of the ellipse is

1
r2 =

cos2 θ

a2 +
sin2 θ

b2 , (7.9)

and, moreover, that

MG = −
dr
dθ

= −y
dy
dx
.

After differentiation of (7.9), we have

−
2
r3

dr
dθ

=

{
1
b2 −

1
a2

}
2 sin θ cos θ. (7.10)

It also follows that

1
r2 −

1
a2 =

{
1
b2 −

1
a2

}
sin2 θ,

1
b2 −

1
r2 =

{
1
b2 −

1
a2

}
cos2 θ.

Therefore, (7.10) reduces to

−
2
r3

dr
dθ

= 2

√{
1
r2 −

1
a2

}{
1
b2 −

1
r2

}
,

and we have

−
dr
dθ

=
r
√
(a2 − r2)(r2 − b2)

ab
.

Hence, as M P = r = y,

dy
dx

= −

√
(a2 − y2)(y2 − b2)

ab
,

x =

∫ a

y

ab dy√
(a2 − y2)(y2 − b2)

.

If we now make the substitution s2
= (a2

− y2)/(a2
− b2), then we have an elliptic

integral of the first kind, thus obtaining

x = b dn−1(y/a),

where k =
√

a2 − b2/a. The constant of integration vanishes as initially x = 0 and
y = a. By inversion of the integral, we obtain the result.
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Chapter 8

Bernoulli’s Lemniscate

Men will fight long and hard for a bit of coloured ribbon

NAPOLÉON BONAPARTE 1

The lemniscate is a figure of eight shaped curve whose equation in polar coordinates is

r2
= a2 cos 2θ,

or in Cartesian coordinates,

(x2
+ y2)2 = a2(x2

− y2).

It is a special case of the Cassinian ovals illustrated in Figure 8.1. A Cassinian oval is
the locus of the intersection of a tangent to a conic and the perpendicular taken from
the origin to the tangent. If the curve is a regular hyperbola, then we have a lemniscate.

8.1. Rectification of the lemniscate

The problem of calculating the arc length of the lemniscate provided one the first mo-
tivations for the study of elliptic integrals.

THEOREM 8.1. The length of the arc connecting the origin and a point r on the
lemniscate

r2
= cos 2θ (8.1)

is given by the lemniscatic integral

s =

∫ r

0

dt
√

1 − t4
.

Proof (Prasolov & Solovyev, 1997). We define polar coordinates by 2

1Napoléon Bonaparte (1769–1821).
The appellation lemniscate stems from the Latin lemniscatus meaning decorated with ribbons. Its prop-

erties were first studied by the astronomer Giovanni Domenico Cassini (1625–1712) who considered more
general curves, that now take his name, to describe the orbits of the planets more precisely than with ellipses.
However, Cassini’s work was only published, posthumously, in 1749, and so the lemniscate is more often
associated with the 1694 papers of Jakob Bernoulli, and from which follows the name Bernoulli’s lemniscate.

The lemniscatic integral first appeared in connection with the rectification of a curve known as the curva
elastica. The term curva elastica has historical significance due to its appearance in the diary of Johann
Carl Friedrich Gauss (1777–1855). In entry 51, Gauss starts to write curvam elasticam, but crosses through
elasticam and replaces it with lemniscatam.
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Figure 8.1. Cassinian ovals. The lemniscate is a Cassinian oval with a self intersection.

x = r cos θ, y = r sin θ, (8.2)

and it follows that

dx2
+ dy2

= (cos θ dr − r sin θ dθ)2 + (sin θ dr + r cos θ dθ)2 = dr2
+ r2 dθ2.

Now, by (8.1), we have
2r dr = −2 sin 2θ dθ.

Hence,

dr2
+ r2dθ2

= dr2
+

r4dr2

1 − cos2 2θ
=

dr2

1 − r4 ,

and, after integration, we obtain the result.

8.2. The lemniscate functions

If we denote the lemniscatic integral by

ϕ1 =

∫ x

0

dt
√

1 − t4
, (8.3)

then we can express the relationship between ϕ1 and x as

x = slϕ1

2Prasolov & Solovyev (1997) 78–79.
The notation slϕ, clϕ and ω is that which appears in Gauss’s notebooks of 1801 and 1808. The most

significant part of his work in relation to the lemniscate is that he worked with an inverse function, a concept
that had not previous been employed, and one that was rediscovered by Jacobi years later.

Gauss did not publish his on results on the lemniscate functions, and, consequently, elliptic functions,
though it was mentioned by Jacobi in a letter to Legendre that he believed that Gauss already had in his
possession many of the results that Jacobi himself published in 1827. Legendre, who was said to have had
a particular dislike of Gauss, expressed serious doubt and incredulity that anyone could have such results,
but leave them unpublished. It has been suggested that his decision not to publish stems from the disdainful
reception that his Disquisitiones Arithmeticæ of 1801 received from l’Académie des Sciences de Paris, of
whom Legendre was, of course, a member.
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Circular functions Lemniscate functions

ϕ =
∫ x

0
dt√
1−t2

ϕ =
∫ x

0
dt√
1−t4

x = sinϕ x = slϕ
1
2π =

∫ 1
0

dt√
1−t2

1
2ω =

∫ 1
0

dt√
1−t4

cosϕ = sin( 1
2π − ϕ) clϕ = sl( 1

2ω − ϕ)

sin 1
2π = 1 sl 1

2ω = 1

sinπ = 0 slω = 0

sin(π + ϕ) = − sinϕ sl(ω + ϕ) = − slϕ

sin(−ϕ) = − sinϕ sl(−ϕ) = − slϕ

Table 8.1. Comparison between the circular functions and the lemniscate functions.

where slϕ1 is known as the lemniscate sine. Suppose we also have

ϕ2 =

∫ 1

x

dt
√

1 − t4
,

1
2ω =

∫ 1

0

dt
√

1 − t4
, (8.4)

then we denote the lemniscate cosine by

x = clϕ2,

and it follows that we have the identity

slϕ = cl( 1
2ω − ϕ).

The constant ω is equal to the length of arc of one petal of the lemniscate, and has the
same significance for the lemniscate as π does for the circle. The similarities between
the circular and lemniscate functions are further illustrated in Table 8.1.

The lemniscate functions can also be expressed in term of elliptic functions by the
equations

slϕ =
1
2

√
2 sd(

√
2ϕ, k),

clϕ = cn(
√

2ϕ, k),

where k =
1
2

√
2.

Moreover, 1
2ω is the smallest positive value of ϕ for which

cn(
√

2, k) = 0.

Therefore, it follows that
ω =

√
2K (k), (8.5)

and from this result we can express K (k) in terms of gamma functions. 3

3The gamma function 0(z) was first defined by Euler using an infinite integral, namely

0(z) =

∫
∞

0
e−t t z−1 dt,

when the real part of z is positive. The notation 0(z) was introduced by Legendre in 1814.
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THEOREM 8.2. The complete elliptic integral of the first kind with modulus k =
1
2

√
2

can be expressed as

K (k) =
1

4
√
π
02( 1

4 ),

where 0(z) is the gamma function.

Proof (Whittaker & Watson, 1927). From (8.3) and (8.4) it follows that 4

K (k) =
√

2
∫ 1

0

dt
√

1 − t4
.

Making the substitution s = t4, then we have

K (k) =
1
4

√
2

∫ 1

0

ds

s
3
4
√

1 − s
,

or, in terms of gamma functions,

K (k) =
1
4

√
2
0( 1

4 )0(
1
2 )

0( 3
4 )

.

Moreover, as 0( 1
2 ) =

√
π and 0(z)0(1 − z) = π/ sinπ z, we have the result.

8.3. Fagnano’s doubling of the lemniscate

The earliest instance of an addition formula related to elliptic integrals is attributed to
Fagnano for his discovery of a formula to double an arc of the lemniscate. This formula
also has the geometric context that we can double the arc of the lemniscate using ruler
and compasses alone.

THEOREM 8.3. An arc of the lemniscate can be doubled using the formula∫ a

0

dt
√

1 − t4
= 2

∫ c

0

dt
√

1 − t4
,

where

c =
2a

√
1 − a4

1 + a4 .

Proof (Nekovář, 2004). We first make the substitution a = (1 + i)b/
√

1 − b4 in (8.3), 5

and it follows that ∫ a

0

da
√

1 − a4
= (1 + i)

∫ b

0

db
√

1 − b4
.

Next, if we let b = (1 − i)c/
√

1 − c4, then we have∫ b

0

db
√

1 − b4
= (1 − i)

∫ c

0

dc
√

1 − c4
.

4Whittaker & Watson (1927) 524.
5Nekovář (2004) 16–18.
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Figure 8.2. Division of the lemniscate into five equal parts.

By combining our two substitutions, it follows that

a =
(1 + i)(1 − i)c√
(1 − b4)(1 − c4)

=
2c

√
1 − c4

1 + c4 ,

and hence, ∫ a

0

da
√

1 − a4
= 2

∫ c

0

dc
√

1 − c4
.

We can reformulate Theorem 8.3 in terms of the lemniscate functions of Sec-
tion 8.2.

THEOREM 8.4. The doubling formula for the lemniscate sine is

sl 2ϕ =
2 slϕ

√
1 − sl4 ϕ

1 + sl4 ϕ
.

8.4. Division of the lemniscate 6

One application of Theorem 8.3 made by Fagnano is in the division of a quadrant of
the lemniscate. We consider the division into five parts, illustrated in Figure 8.2.

Let O A = z, O B = u, OC = v and O D = w. If

u =
2z

√
1 − z4

1 + z4 ,

then arc O B = 2 arc O A. If

v =
2u

√
1 − u4

1 − u4 ,

then, similarly, arc OC = 2 arc O B. Finally, if

w =

√
1 − z2

1 + z2 ,

then arc O A = arc P D. Setting v = w and eliminating u and z, we have 7

6Ayoub (1984) 144–145.
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w24
+ 50w20

− 125w16
+ 300w12

− 105w8
− 62w4

+ 5 = 0.

The polynomial w8
− 2w4

+ 5 is a factor, and leaves

w16
+ 52w12

− 26w8
− 12w4

+ 1 = 0

which factors as

(w8
+ (26 − 12

√
5)w4

+ 9 − 4
√

5)(w8
+ (26 + 12

√
5)w4

+ 9 + 4
√

5) = 0.

It follows that the real roots of this can be constructed solely with ruler and compasses.

8.5. Euler’s addition formula

Theorem 8.4 was later extended by Euler to give an addition theorem for the lemnis-
cate sine, which was then generalized further to give an addition formula for elliptic
integrals.

THEOREM 8.5. The addition formula for the lemniscate sine is

sl(ϕ + ψ) =

slϕ
√

1 − sl4 ψ + slψ
√

1 − sl4 ϕ

1 + sl2 ϕ sl2 ψ
.

Proof (Markushevich, 1992). Consider an equation of the form 8

u2
+ v2

+ Au2v2
+ 2Buv − C2

= 0, (8.6)

where A, B, C , are constants. By differentiation, we have{
u(1 + Av2)+ Bv

}
du +

{
v(1 + Au2)+ Bu

}
dv = 0. (8.7)

But
(1 + Av2)u2

+ 2Buv + v2
− C2

= 0,

and it follows that

u(1 + Av2)+ Bv =

√
C2 + (AC2 + B2 − 1)v2 − Av4. (8.8)

Moreover, as (8.6) is symmetric in u and v, we can interchange these variables to
similarly obtain

v(1 + Au2)+ Bu =

√
C2 + (AC2 + B2 − 1)u2 − Au4. (8.9)

7One of the many relations proven by Fagnano was that if t =

√
1 + z2/1 − z2, then∫

dz√
1 − z4

=

∫ √
1 + z2

1 − z2 dz +

∫
t2√

t4 − 1
dt − zt.

Geometrically, the integral on the left hand side is the arc length of a lemniscate, the first of the right hand
side is the arc length of an ellipse, while the second is that of a rectangular hyperbola.

8Markushevich (1992) 2–4.
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Therefore, by applying both (8.8) and (8.9) we have that (8.7) reduces to

du√
C2 + (AC2 + B2 − 1)u2 − Au4

+
dv√

C2 + (AC2 + B2 − 1)v2 − Av4
= 0.

(8.10)
It follows that (8.6) is a solution of this differential equation.

We now rewrite (8.10) as

du
√

1 + mu2 + nu4
+

dv
√

1 + mv2 + nv4
= 0, (8.11)

by simply setting B2
= 1 + mC2

+ nC4. Therefore, (8.6) becomes

u2
+ v2

− nC2u2v2
+ 2

√
1 + mC2 + nC4uv − C2

= 0,

and it follows that

4(1 + mC2
+ nC4)u2v2

=

{
(u2

+ v2)− (nu2v2
+ 1)C2

}2
.

If we let 1 + mt2
+ nt4

= P(t), then

(1 − nu2v2)2C4
− 2

{
u2 P(v)+ v2 P(u)

}
C2

+ (u2
− v2) = 0.

As (1 − nu2v2)(u2
− v2) = u2 P(v)− v2 P(u), we have

C2
=

u2 P(v)+ v2 P(u)+ 2uv
√

P(u)P(v)
(1 − nu2v2)2

,

from which we obtain

C =
u
√

P(v)+ v
√

P(u)
1 − nu2v2 . (8.12)

This an integral of (8.11) expressed in algebraic form. However, this integral can also
be written in the transcendental form 9∫ u

0

dt
√

P(t)
+

∫ v

0

dt
√

P(t)
= α + β = γ, (8.13)

where γ is a constant. Now, (8.12) must follow from (8.13). If we set u = 0 in (8.13),
then ∫ v

0

dt
√

P(t)
= γ.

Moreover, (8.12) implies that C = v. Hence,∫ u

0

dt
√

P(t)
+

∫ v

0

dt
√

P(t)
=

∫ C

0

dt
√

P(t)
,

If we set P(t) = 1 − t4, then we have the result.

9A transcendental form is one which cannot be expressed in terms of algebra.
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Chapter 9

Spherical Trigonometry

Spherical trigonometry is the study of spherical triangles. These are formed by the
intersection of three great circles on a sphere. The angles of a spherical triangle are 1

defined by the angle of intersection of the corresponding tangent lines to each vertex.

9.1. Formulæ of spherical trigonometry

Suppose ABC is a spherical triangle on a unit sphere. Let the sides BC , C A and AB
be denoted by a, b and c, respectively, and their corresponding opposite angles by α, β
and γ . Then we can state the following formula:

THEOREM 9.1. The spherical cosine formula is

cos a = cos b cos c + sin b sin c cosα. (9.1)

Proof (Smart, 1977). Let AD be the tangent at A to the great circle AB, and let AE be 2

the tangent at A to the great circle AC . The radius O A is perpendicular to AD and AE .
As AD lies in the plane of the great circle AB, the radius O B intersects the tangent
AD at D. Similarly, the radius OC meets the tangent AE at E . Now, the spherical
angle α = 6 B AC is defined to be the angle between the tangents at A to the two great
circles AB and AC . Therefore, α = 6 D AE .

In the plane triangle O AD, we have 6 B AC = π and 6 AO D = 6 AO B = c. It
follows that

AD = O A tan c, O D = O A sec c.

Similarly, from the plane triangle O AE , we have

AE = O A tan b, O E = O A sec b.

Now, from the plane triangle D AE , we obtain

DE2
= AD2

+ AE2
− 2AD.AE cos 6 D AE

= O A2(tan2 c + tan2 b − 2 tan b tan c cosα), (9.2)

Until the sixteenth century, it was primarily spherical trigonometry that interested academics studying
this branch of geometry, as a result of the popularity of astronomy within the natural sciences. The first
reference to spherical triangles appeared in Spherærica in which Menelaus of Alexandria (c 70–130 AD)
developed spherical analogues of the results of plane triangles found in The Elements of Euclid of Alexandria
(c 325–265 BC).

1A great circle is the circle cut out on the surface of the sphere by a plane through the centre of the sphere.
2Smart (1977) 6–8.
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Figure 9.1. A spherical triangle.

and, from DO E , it follows that

DE2
= O D2

+ O E2
− 2O D.O E cos 6 DO E .

But 6 DO E = 6 BOC = a, and so

DE2
= O A2(sec2 c + sec2 b − 2 sec b − 2 sec b sec c cos a). (9.3)

Hence, by combining (9.2) and (9.3), we have

sec2 c + sec2 b − 2 sec b sec c cos a = tan2 c + tan2 b − 2 tan b tan c cosα.

By application of the identity sec2 θ = 1 + tan2 θ , and after simplification, we have the
result.

The spherical cosine formula can be seen as the fundamental formula of spherical
trigonometry as from it we can derive each of the other formulæ of spherical trigonom-
etry.

THEOREM 9.2. The spherical sine formula is

sin a
sinα

=
sin b
sinβ

=
sin c
sin γ

= k, (9.4)

where k < 1 is constant.

Proof (Smart, 1977). By (9.1), we have 3

sin b sin c cosα = cos a − cos b cos c.

If we square each side, and write the left hand side in the form

sin2 b sin2 c − sin2 b sin2 c sin2 α,

or, alternatively, in the form

1 − cos2 b − cos2 c + cos2 b cos2 c − sin2 b sin2 c sin2 α,

3Smart (1977) 9–10.
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it follows that

sin2 b sin2 c sin2 α = 1 − cos2 a − cos2 b − cos2 c + 2 cos a cos b cos c. (9.5)

Let k be a positive constant defined by

sin2 a sin2 b sin2 c = k2(1 − cos2 a − cos2 b − cos2 c + 2 cos a cos b cos c).

Then, by (9.5), we have
sin2 a

sin2 α
= k2.

Hence,

k = ±
sin a
sinα

.

But in a spherical triangle the lengths of each side are less than π , as are the angles.
Therefore, we take the positive sign.

By a similar argument, we have

k =
sin b
sinβ

=
sin c
sin γ

.

THEOREM 9.3. The analogue formula is

sin a cosβ = cos b sin c − sin b cos c cosα. (9.6)

Proof (Smart, 1977). Applying formulæ analogous to (9.1), we have 4

sin c sin a sinβ = cos b − cos c cos a

= cos b − cos c(cos b cos c + sin b sin c cosα)

= sin2 c cos b − sin b sin c cos c cosα.

The result follows by dividing by sin c.

THEOREM 9.4. The four parts formula is

cos a cos γ = sin a cot b − sin γ cotβ. (9.7)

Proof (Smart, 1977). Again using analogues of (9.1), we have 5

cos b = cos a cos c + sin a sin c cosβ
= cos a(cos b cos a + sin b sin a cos γ )+ sin a sin c cosβ.

Therefore,
cos b sin2 a = cos a sin b sin a cos γ + sin a sin c cosβ.

Dividing by sin a and sin b, it follows that

cot b sin a = cos a cos γ +
sin c
sin b

cosβ,

and by application of (9.4), we have the result.

4Smart (1977) 10–11.
5Smart (1977) 12.
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We consider the polar triangle of ABC . If we denote this by A′ B ′C ′, the sides by 6

7a′, b′ and c′, and the opposite angles by α′, β ′ and γ ′, then

α′
= π − a, β ′

= π − b, γ ′
= π − c,

and similarly
a′

= π − α, b′
= π − β, c′

= π − γ.

Then we have the polar formulæ corresponding to (9.1) and (9.6).

cosα′
= − cosβ ′ cos γ ′

+ sinβ ′ sin γ ′ cos a′, (9.8)
sinα′ cos b′

= cosβ ′ sin γ ′
+ sinβ ′ cos γ ′ cos a′.

Suppose we have now have a sphere of radius r . The formulæ of spherical trigonom-
etry still hold, but we replace each of a, b and c by a/r , b/r and c/r , respectively. If
we let 1/r = l, and denote the angles of this spherical triangle by αl , βl and γl , then
we have

cos la = cos lb cos lc + sin lb sin lc cosαl , (9.9)
sin la
sinαl

=
sin lb
sinβl

=
sin lc
sin γl

. (9.10)

If we subtract 1 from each side of (9.9) and then divide by l2, it follows that by letting
l tend to zero, we have the cosine formula of plane trigonometry, namely

c2
= a2

+ b2
− 2ab cosα0.

By dividing both sides of (9.10) by k and similarly letting l tend to zero, then we have
the sine formula of plane trigonometry, which can be stated as

a
sinα0

=
b

sinβ0
=

c
sin γ0

.

9.2. Elliptic measures of the angles of a spherical triangle

We introduce elliptic functions to spherical trigonometry by defining the elliptic mea-
sures of the angles α, β and γ . If we denote these by u, v and w, then they are given
by the equations

sn u = sinα, sn v = sinβ, snw = sin γ.

The modulus of each of the elliptic functions is taken to be k, as defined in (9.4).

THEOREM 9.5. The elliptic measures of the angles of a spherical triangle always sum
to 2K .

Proof (Lawden, 1989). We can choose each measure to be in the interval from zero to 8

6Smart (1977) 15.
7Suppose ABC is a spherical triangle. The great circle of which BC is an arc has two poles, one in each

of the hemispheres into which it divides the sphere. If we denote by A′ the pole in the hemisphere in which
A lies, and similarly denote by B′ and C ′ the appropriate poles of C A and AB, then A′ B′C ′ is the polar
triangle of ABC .
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K . Then we have
α = am u, β = am v, γ = amw,

and it follows that

cn u = cosα, cn v = cosβ, cnw = cos γ.

By (9.4), we obtain

sin a = k sn u, sin b = k sn v, sin c = k snw,

from which it follows that

cos a = dn u, cos b = dn v, cos c = dnw.

Now, by substituting in (9.1) and (9.8) we have

dnw = dn u dn v + k2 sn u sn v cnw, (9.11)
cnw = − cn u cn v + sn u sn v dnw. (9.12)

Solving for cnw and dnw, and applying the relevant addition formulæ (see below), we
have

cnw = − cn(u + v), dnw = dn(u + v).

As we have chosen that each of u, v and w lie in the interval from zero to K , these
equations have a unique solution, namely

w = 2K − (u + v).

Therefore,
u + v + w = 2K . (9.13)

9.3. A further derivation of the Jacobi addition formulæ

Spherical trigonometry also provides an alternative method to deriving the addition
formulæ for the Jacobi elliptic functions.

THEOREM 9.6. The addition formulæ for the Jacobi elliptic functions are

sn(u + v) =
sn u cn v dn v + sn v cn u dn u

1 − k2 sn2 u sn2 v
,

cn(u + v) =
cn u cn v − sn u sn v dn u dn v

1 − k2 sn2 u sn2 v
,

dn(u + v) =
dn u dn v − k2 sn u sn v cn u cn v

1 − k2 sn2 u sn2 v
.

Proof (Lawden, 1989). If we keep c and γ constant, and vary a, b, c, α and β, then, by 9

8Lawden (1989) 103–105.
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applying (9.4), we clearly see that k is constant. After differentiation of (9.8), we have

(sinα cosβ + cosα sinβ cos c) dα + (cosα sinβ + sinα cosβ cos c) dβ = 0.

By (9.9) this can be simplified to obtain

cos b dα + cos a dβ = 0. (9.14)

Now, the elliptic measure of the angle α was given by the equation sn u = sin A, and
so, by differentiation, it follows that

cn u dn u du = cosα dα = cn u dα,

and hence,
dα = dn u du = cos a du.

Similarly,
dβ = dn v dv = cos b dv.

It follows that (9.14) is equivalent to

du + dv = 0.

Therefore, for fixed c and γ , we have that u + v is equal to a constant. To calculate
this constant, we put a = 0 and b = c. Then α = 0 and β = π − γ , and it follows
that u = 0 and v = 2K − w. Therefore, the constant is equal to 2K − w, and we
have (9.13). By (9.1) and (9.8), we obtain (9.11) and (9.12), and by the substitution
w = 2K − (u + v), we have

dn(u + v) = dn u dn v − k2 sn u sn v cn(u + v),

cn(u + v) = − cn u cn v + sn u sn v dn(u + v).

The result follows by solving for cn(u + v) and dn(u + v), from which it is easy to
deduce the formula for sn(u + v).

9Lawden (1989) 105.
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Chapter 10

Surface Area of an Ellipsoid

An ellipsoid is a closed surface of which all plane sections are either ellipses or cir-
cles. If a, b and c are its axes, then the equation of a general ellipsoid in Cartesian
coordinates is

x2

a2 +
y2

b2 +
z2

c2 = 1.

When a = b = c, the surface is a sphere, while if two axes are equal then the ellipsoid
is a spheroid, formed by revolving an ellipsoid about one of its axes. These can be seen
in Figure 10.1.

10.1. Surface area in terms of elliptic integrals of the second kind

While it is easy to calculate that the surface area of a sphere of radius r is 4πr2, the
equivalent problem for the ellipsoid is altogether more complicated, and requires ellip-
tic integrals of the second kind.

THEOREM 10.1. The surface area of the ellipsoid

x2

a2 +
y2

b2 +
z2

c2 = 1 (10.1)

is given by

S = 2πc2
+

2πb
√

a2 − c2

{
(a2

− c2)E(u)+ c2u
}
,

where a, b, c are constant and sn2 u = (a2
− c2)/a2.

Proof (Bowman, 1953). Let p be the perpendicular from the centre of the ellipsoid on 1

the tangent plane at the point (x, y, z), and let cosα, cosβ and cos γ be the direction
cosines of the normal at that point. Then

cosα =
px
a2 , cosβ =

py
b2 , cos γ =

pz
c2 ,

and
1
p2 =

x2

a4 +
y2

b4 +
z2

c4 .

Although mentioned in a letter written by Sir Isaac Newton (1643–1727) in 1672, the term ellipsoid
was subsequently displaced by Euler’s elliptoid. Its modern usage is attributed to Sylvestre François Lacroix
(1765–1843) and Jean-Baptiste Biot (1774–1862).

1Bowman (1953) 31–32.

63



Figure 10.1. A sphere, two spheroids and an ellipsoid. The oblate spheroid (b) is formed by
revolving an ellipse about its minor axis, while the prolate spheroid (c) results from a revolution
about its major axis.

Therefore, the points at which the normals make a constant angle with the z-axis lie on
the cone given by the equation{

x2

a4 +
y2

b4 +
z2

c4

}
cos2 α =

z2

c4 . (10.2)

Moreover, by eliminating z from (10.1) and (10.2) we have{
cos2 γ

a2 +
sin2 γ

c2

}
x2

a2 +

{
cos2 γ

b2 +
sin2 γ

b2

}
y2

b2 =
sin2 γ

c2 ,

and so these points also lie on an elliptic cylinder. If A is the area of the cross-section of
this cylinder and S is the area of the surface of the ellipsoid intercepted by the cylinder
where z > 0, then

dS = sec γ dA. (10.3)

Now, the semiaxes of the cross-section of the cylinder have lengths

a2 sin γ√
c2 cos2 γ + a2 sin2 γ

,
b2 sin γ√

c2 cos2 γ + b2 sin2 γ

,

and it follows that its area is

A =
πa2b2 sin2 γ√

(c2 cos2 γ + a2 sin2 γ )(c2 cos2 γ + a2 sin2 γ )

.

Suppose we define e1 and e2 by e2
1 = (a2

− c2)/a2 and e2
2 = (b2

− c2)/b2, then

A =
πab sin2 γ√

(1 − e2
1 cos2 γ )(1 − e2

2 cos2 γ )
.

Now, e2
1 > e2

2 if a2 > b2 > c2, so if we let t = e1 cos γ and k = e2/e1, we have

A =
πab(e2

1 − t2)

e2
1

√
(1 − t2)(1 − k2t2)

.
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Moreover, if we put e1 = sn u and t = sn v, it follows that

sec γ =
sn u
sn v

, A =
πab
sn2 u

{
sn2 u − sn2 v

cn v dn v

}
.

Hence, after simplification, we have

sn u
πab

dA sec γ = −

{
dn2 u

dn2 v
+

cn2 u
cn2 v

}
dv.

As γ varies from zero to 1
2π , t varies from e1 to zero, while v varies from u to zero. If

S now denotes the surface area of the whole ellipsoid, then, by (10.3),

sn u
πab

S
2

=

∫ u

0

{
dn2 u

dn2 v
+

cn2 u
cn2 v

}
dv. (10.4)

Now, consider the derivative

d
dv

{
sn v cn v

dn v

}
=

1
k2

{
dn2 v −

k′2

dn2 v

}
.

By integration, we have∫
dv

dn2 v
=

1
k′2

{
E(v)−

k2 sn v cn v
dn v

}
. (10.5)

Similarly,
d

dv

{
sn v dn v

cn v

}
=

k′2

cn2 v
− k′2

− dn2 v,

and ∫
dv

cn2 v
= v +

1
k′2

{
sn v dn v

cn v
− E(v)

}
. (10.6)

By (10.5) and (10.6),∫ u

0

{
dn2 u

dn2 v
+

cn2 u
cn2 v

}
dv = sn u cn u dn u +

dn2 u − cn2 u
k′2 E(u)+ u cn2 u.

Therefore, (10.4) becomes

sn u
2πab

S = sn u cn u dn u +
dn2 u − cn2 u

k′2 E(v)+ u cn2 u,

and it follows that
√

a2 − c2

2πa2b
S =

c2
√

a2 − c2

a2b
+

a2
− c2

a2 E(u)+
c2

a2 u.
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Chapter 11

Seiffert’s Spherical Spiral

Suppose we have a particle moving on the surface of a unit sphere with a constant speed
v and a constant angular velocity a. The curve traced out by this motion is known as
Seiffert’s spherical spiral.

If ϕ is the longitude of the position of the particle, then it follows, from the defini-
tion, that

ϕ = at.

By setting t = s/v we can eliminate t to obtain

ϕ = ks, k = a/v, (11.1)

where s is the length of the curve measured from the north pole.

The constant k is the only parameter that determines the behaviour of a Seiffert’s
spiral. As the angular velocity is constant, it follows that if the surface velocity is high,
then k has to be small, and vice versa.

11.1. Parametric equations of a Seiffert’s spiral in cylindrical coordinates 1

To investigate the properties of a Seiffert’s spiral, we introduce spherical coordinates
(ρ, ϕ, z) of the particle at a position P . Referring to Figure 11.1 and denoting the north
and south poles by N and S, respectively, we define ρ to be the distance from the axis
N S, ϕ the longitude of P , and z to be the height above the equatorial plane. We also
define θ to be the angle between rays from the centre of the sphere to P and to N . 2

If ρ and z are considered as Cartesian coordinates in the meridian plane of P , then ρ
changes sign when the path passes through either of N or S. The coordinate z will
change sign as the particle crosses the equator. We need to further define that when the
particle passes through S, our value of ϕ remains unchanged. If we had adopted the
conventional rule, then passing through a pole would cause ϕ to suddenly increase (or
decrease) by π , therefore contradicting (11.1). This modification is consistent with the

The article Spiraling the earth with C. G. J. Jacobi (Erdös, 2000) uses Seiffert’s spiral to introduce the
Jacobi functions in a completely geometric way. Without needing any previous knowledge of elliptic func-
tions, the definitions, identities, periodicity and reciprocity relations can also be derived from the spiral, much
in the same way that Halphen and Greenhill use circles (Section 6.1) and simple pendulums (Section 5.1),
respectively.

1Erdös (2000) 888-889.
2It turns out that θ = am s.
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Figure 11.1. The beginning of a Seiffert’s spiral on the sphere.

intuitive view that when the particle passes through S it remains in the same meridian
plane.

Using these coordinates we can consider the following result:

THEOREM 11.1. The parametric equations of a Seiffert’s spiral in cylindrical coor-
dinates are 

ρ = sn(s|m),

ϕ =
√

ms,

z = cn(s|m),

(11.2)

where m = k2.

Proof (Erdös, 2000). Consider the infinitesimal line element ds on the sphere, illus-
trated in Figure 11.2. Clearly, we can express ds2 for any curve on the sphere by

ds2
= ρ2dϕ2

+ dρ2
+ dz2. (11.3)

N

P

E

O

ds

Figure 11.2. An infinitely small line element ds on the surface of the sphere.
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As we have a unit sphere, then ρ2
+ z2

= 1, and we eliminate dz2. Hence,

ds2
= ρ2dϕ2

+
1

1 − ρ2 dρ2,

for ρ 6= 1. Applying (11.1), we can replace dϕ2 by k2ds to obtain

ds =
dρ√

(1 − ρ2)(1 − k2ρ2)
, (11.4)

where |ρ| < 1/k. Therefore, the total distance s travelled along the curve from N to
P can be expressed in terms of the distance ρ of that point from the axis N S by the
integral

s(ρ, k) =

∫ ρ

0

dρ√
(1 − ρ2)(1 − k2ρ2)

. (11.5)

This defines the elliptic integral of the first kind with modulus k. As the square of
k occurs in this integral, then, when describing Seiffert’s spirals, we use the notation
m = k2, which we similarly use to represent the parameter of the elliptic integral.
Therefore, by inversion of (11.5), we immediately have the Jacobi elliptic function
sn(s|m), and it follows that

ρ = sn(s|m). (11.6)

Suppose instead of eliminating dz from (11.3), we use the property ρ2
+ z2

= 1 to
eliminate dρ. It follows that we obtain an expression of the length of the path travelled
as a function of the distance z of P from the equatorial plane, namely

s(z, k) =

∫ z

1

dz√
(1 − z2)(1 − k2 + k2z2)

, (11.7)

where the positive square root
√

1 − z2 < 1/k. Hence, by inversion of this integral we
have the Jacobi elliptic function cn(s|m), and it follows that

z = cn(s|m). (11.8)

To summarize, we take (11.2) as our definition of a Seiffert’s spiral on the surface
of a unit sphere, with the length s measured from the north pole N (at which ϕ = 0,
ρ = 0 and z = 1). We distinguish different Seiffert’s spirals by a parameter m.

We can finally note that by (11.6) and (11.8), and as ρ2
+ z2

= 1 we have the
identity

sn2(s|m)+ cn2(s|m) = 1. (11.9)

11.2. Properties of a Seiffert’s spiral 3

3Erdös (2000) 889–891.
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Figure 11.3. A Seiffert’s spiral with parameter m = 0.1 of length 50π . The graph shows the
three elliptic functions in this case, with sn(0|0.1) starting at zero, cn(s|0.1) starting at 1 and
dn(s|0.1) staying close to 1.

Figure 11.2 shows part of a spiral traced out for some parameter m. At an arbitrary
point P , the curve crosses the meridian at an angle α. If we consider the illustrated
infinitely small spherical triangle at P , we have

cosα =

√
dz2 + dρ2

ds
=

√
1 − m sn2(s|m), (11.10)

by applying (11.4). The right hand side of this equation therefore defines the third
Jacobi elliptic function

dn(s|m) = cosα. (11.11)

From our geometric point of view, this means that if we travel distance s from N along
a Seiffert’s spiral, then the cosine of the angle formed at that point with the meridian
arc N S equals dn(s|m).

Now, suppose we set m = 0. Even though this corresponds to an infinite-valued
v in (11.1), (11.2) still remains valid, and we have ϕ remaining zero for any s. As we
travel along the meridian arc N S, then as s increases from zero to π , we can see that
s = θ , ρ = sin s, z = cos s and α = 0. Therefore, from (11.2) and (11.11) it follows
that

sn(s|0) = sin s, cn(s|0) = cos s, dn(s|0) = 1.

Hence, we have shown that the circular functions can to considered to be special cases
of the Jacobi elliptic functions.

To ensure that we do not have cusps in the spiral for m > 0, when the particle
reaches S we do not reverse direction and travel along the meridian ϕ = 0, but instead
continue smoothly. Therefore, by the convention previously adopted, ϕ remains zero
and we complete a full meridian circle.

We now suppose that m 6= 0, but is still much less than 1. The curve defined
by (11.2) will make a small angle α with the meridians it crosses. It follows that
dn(s|m) remains close to 1 for all s and, as illustrated in Figure 11.3, the Jacobi elliptic
functions are still similar to their circular counterparts. As we can begin to see in this
figure, except when it is a closed curve, a Seiffert’s spiral crosses each point on the
sphere, other than its poles N and S, twice. The poles are crossed an infinite number
of times, and it follows that the length of the spiral is itself infinite.
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Figure 11.4. A Seiffert’s spiral with parameter m = 0.8 of length 3 1
2π . We have sn(s|0.8)

starting at zero, cn(s|0.8) starting at 1 and dn(s|0.8) always greater than 1.

Figure 11.4 shows a Seiffert’s spiral for m = 0.8. In this case the Jacobi elliptic
functions differ considerably from the circular functions.

When m increases towards 1, the angle α at which the spiral crosses the merid-
ian at the equator approaches 1

2π . This follows from the fact that on the equator
ρ = sn(s|m) = 1, and, by (11.10), setting m = 1 implies that dn(s|m) = cosα = 0.
Therefore, this spiral (shown in Figure 11.5) never crosses the equator. Moreover, it
winds around the northern hemisphere, asymptotically approaching the equator, be-
cause its length s, given by (11.7) becomes infinite for z = 0 when m = 1. So for
m = 1, (11.1) reduces to ϕ = s, and we have

sinα = ρ
dϕ
ds

= ρ,

and, since sin θ = ρ, it follows that α = θ . Hence, at every point on the spiral, the
angle α that it makes with the meridian equals the latitude θ . Moreover, we can express
(11.5) and (11.7) in terms of inverse hyperbolic functions and it follows that

sn(s|1) = tanh s, sn(s|1) = dn(s|1) = sech s.

Figure 11.5. A Seiffert’s spiral with parameter m = 1 of length 3π . The three elliptic functions
are illustrated by two curves on the graph, with sn(s|1) = tanh s starting at zero and cn(s|1) =

dn(s|1) = sech s starting at 1.
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Figure 11.6. A Seiffert’s spiral with parameter m = 1.25 of length 32. The elliptic function
sn(s|1.25) can be scaled to coincide with sn(s|0.8), while cn(s|1.25) and dn(s|1.25) can be
scaled to coincide with dn(s|0.8) and cn(s|0.8) (see Figure 11.4).

11.3. Low speed travel 4

We now consider a Seiffert’s spiral with m > 1. Such a spiral can be seen in Fig-
ure 11.6, and corresponds to the case when the surface speed is low. In order for the
angular velocity to remain the same as at high surface speed, the spiral must stay close
to N , so as to circle the sphere in a short time. As with case m = 1, for m > 1 the
spiral stays entirely in the northern hemisphere. When m is much greater than 1, we
have that ρ remains small for all s, and it follows that sn(s|m) will be small in absolute
value. Contrasting with this, values of z, and hence, cn(s|m) will be close to 1 for all
s.

Suppose that we denote the lowest point of the spiral by L . At this point, the spiral
is tangent to a circle of latitude, and we have cosαL = 0. By (11.10) we also have

ρL = max {sn(s|m)} = 1/
√

m,

for m > 1. The value ρL is the maximum distance of the spiral from the axis N S.
From (11.9), we have that the latitude of the lowest point of the spiral is

zL = min {cn(s|m)} =
√

1 − (1/m),

for m > 1.

11.4. Periodicity of the Jacobi elliptic functions 5

To demonstrate the periodicity of the Jacobi elliptic functions, we return to considering
a Seiffert’s spiral with m much less than 1. This spiral is close to the meridian circle,
and its segments lying between any two successive passages of the same pole are con-
gruent in that they, and their directions, can be mapped onto each other by a rotation
around the axis N S. As a result of this congruence, we consider such a segment to be
the period of the spiral.

4Erdös (2000) 889.
5Erdös (2000) 891–892.
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Now, the length sE of the arc between the pole and equator depends on m, and, by
(11.5), is equal to K (m), the complete elliptic integral of the first kind. The total length
of the period is therefore 4sE = 4K (m). Similarly, this is the period of ρ = sn(s|m)
and z = cn(s|m). As the cosine of the angle between the spiral and the meridian is
equal to 1 at each pole crossing, the period of cosα = dn(s|m) is 2sE = 2K (m).

11.5. Seiffert’s spiral as a closed curve

Suppose we wish to find under what condition Seiffert’s spiral is a periodic function on
the sphere, or, from a geometric point of view, that it is a closed curve. This problem
is different from the discussion of the previous section as an elliptic function is always
periodic, except at m = 1, while we will see that for a Seiffert’s spiral it may not be the
case.

THEOREM 11.2. Seiffert’s spiral forms a closed curve if its parameter m < 1 is
chosen such that

f (m) =
2
π

√
mK (m)

is a rational number.

Proof (Erdös, 2000). We can express the condition for the spiral to be a closed curve by 6

requiring that the particle, starting at N at longitude ϕ0 and having travelled a distance
sn , returns to N at the angle

ϕn = ϕ0 + 2πn, (11.12)

for n a positive integer. While this passage may not be the first return to N , we can
assume that it is the first return at angle ϕn . In this case, we clearly have that the
returning branch of the spiral merges smoothly with the starting branch, and it follows
that the curve is periodic. Without loss of generality, we set ϕ0 = 0. At N we have
ρ = 0, so by (11.2) we require

sn(sn|m) = 0.

Therefore, again by (11.2), the condition of the return angle ϕn is

sn =
2π
√

m
n, (11.13)

where n is again a positive integer, and sn denotes the length of the length of the closed
spiral.

Now, combining (11.12) and (11.13), it follows that

sn
(

2π
√

m
n
∣∣∣∣m)

= 0.

Since sn(s|m) is periodic with period 4K (m) and sn(0|m) = 0, this reduces to

2π
√

m
n = 4K (m)p, (11.14)

for an integer p. Our condition on m follows trivially.

6Erdös (2000) 892–894.
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Figure 11.7. A closed Seiffert’s spiral with n = 4 and p = 1, from which it follows that
m = 0.999944.

Now, suppose we express (11.14) as f (m) = n/p, for positive integers p and n,
and assume that the common factors between these two numbers have been cancelled
out. As the function f (m) varies between zero and infinity when m varies between
zero and 1, the rational numbers n/p form a dense set over every interval from zero 7

to infinity. Therefore, there are infinitely many closed spirals for any interval of m.
Unfortunately, the value of m which corresponds to a particular n/p can only be found
by a numerical, and therefore approximate, solution of the transcendental equation
(11.14). However, the integers p and n have the following geometric interpretation:
Since p is the number of periods of sn(s|m) completed before the spiral closes for the
last time, and in every period ρ = sn(s|m) has two zeroes, then p equals the number
of times the closed curve passes each pole. Similarly, n represents the number of times
the curve circles the axis N S.

An example of a closed Seiffert’s spiral is shown in Figure 11.7.

11.6. Projecting a Seiffert’s spiral

Suppose we project a Seiffert’s spiral with m < 1 on the unit sphere onto the northern
hemisphere of a second concentric sphere of radius

R = 1/
√

m (11.15)

placed around our original sphere. This projection is parallel to the axis N S. The new
spiral is not actually a Seiffert’s spiral as there is no linear proportionality between its
arc length s2 and the meridian angle ϕ2. In fact, we can show that the arc lengths s1 of
the first spiral, and s2 of the second spiral are related by

s2 =

∫ s1

0

√
1 − (1 − m) sn2(s|m) ds.

Since s1 is linearly proportional to ϕ1, then s2 is not. It follows that if we wish to
maintain constant angular velocity a = ϕ̇1 along the projected spiral we must vary ṡ2.

7A subset of a set is dense if its closure is equal to the whole set.
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Despite not having a Seiffert’s spiral after the projection, we can still use the pro-
jected spiral to derive more properties of Jacobi elliptic functions. These are known as
the reciprocity relations.

THEOREM 11.3. The reciprocity relations of the Jacobi elliptic functions, which con-
nect functions with parameter m < 1 to functions with parameter 1/m, are

sn
(

√
ms

∣∣∣∣ 1
m

)
=

√
m sn(s|m),

cn
(

√
ms

∣∣∣∣ 1
m

)
= dn(s|m),

dn
(

√
ms

∣∣∣∣ 1
m

)
= cn(s|m).

Proof (Erdös, 2000). By comparison with (11.2), the equations of original spiral, and 8

from the method of our projection, we have

ϕ2 = ϕ1, ρ2 = ρ1 = sin θ1 = R sin θ2. (11.16)

We then eliminate ρ1 from (11.4), by using (11.15) and (11.16), to obtain

√
mds1 =

dθ2√
1 − (1/m) sin2 θ2

.

By inversion of this integral, we have

sin θ2 = sn
(

√
ms1

∣∣∣∣ 1
m

)
.

Applying (11.2) and (11.16), we have the relation for sn(s|m). By (11.9) and (11.10),
we obtain relations for cn(s|m) and dn(s|m).

In each case reciprocity relations s is the length of the arc of the original Seiffert’s
spiral, and not that of its projected equivalent.

8Erdös (2000) 894.
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Part III

Applications of the Weierstrass Elliptic
Functions
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Chapter 12

The Spherical Pendulum

A spherical pendulum is a pendulum that is suspended from a pivot mounting, which 1

allows it to swing in any of an infinite number of vertical planes through the point of
suspension.

12.1. Equations of motion of the spherical pendulum in cylindrical coordinates

We consider a particle of mass m, suspended from a fixed point O by a light wire of
length l. The forces acting on the particle are its weight, a constant force due to gravity
of magnitude mg vertically downward, and by the tension in a wire.

If we let AO A′ be the vertical diameter of the sphere on which the particle moves,
and let P N be the perpendicular from the particle to this diameter, then we can define
cylindrical coordinates (ρ, θ, z) as illustrated in Figure 12.1. Therefore, we have that
ρ = P N , θ is the angle between the meridian AP A′ and a datum meridian AM A′, and
z = O N , taking positive values for N below O . Also we have that the velocity of the
particle is given by (ρ̇, ρθ̇ , ż) in this coordinate system.

THEOREM 12.1. The equations of motion of the spherical pendulum in cylindrical
coordinates are

r2
= −l2

{℘(u)− ℘(α)}{℘(u)− ℘(β)},

e2iθ
= −E2 σ(u + β)σ(u − α)

σ(u + α)σ(u − β)
e{ζ(α)−ζ(β)}u,

z = l℘
(√

g
2l

t +
1
2ω2

)
+

1
6g
(v2

0 + 2gz0),

where v0 is the initial velocity of the pendulum, z0 is the initial value of z, t = λu and
α, β, λ, E and l are constants. The periods of ℘(u) are ω1 and ω2.

Proof (Dutta & Debnath, 1965). Since both forces acting on the particle have zero mo- 2

ment about the z-axis, the particle’s momentum about this axis is conserved. Hence,
for a constant h, it follows that

mρ2θ̇ = mh. (12.1)

Energy is also conserved, so
1
2 m(ρ̇2

+ ρ2θ̇2
+ z2)− mgz =

1
2 mv2

0 − mgz0,

1The spherical pendulum can be considered a generalization of the simple pendulum of Section 5.1.
2Dutta & Debnath (1965) 88–91.
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Figure 12.1. A spherical pendulum.

with z0 being the initial position of the particle along the z-axis and v0 the initial ve-
locity of the particle. If we define a further constant c = v2

0 + 2gzo/2g, then

ρ̇2
+ ρ2θ̇2

+ ż2
= 2g(c − z). (12.2)

By eliminating θ̇ from (12.1) and (12.2), we have

ρ̇2
+ ż2

= 2g(c − z)−
h2

r2 .

But as the trajectory of the particle lies on the sphere, we have ρ2
+ z2

= l2, which
implies ρρ̇ + zż = 0. Therefore, we can also eliminate ρ and ρ̇ to obtain

l2 ż2
= 2g(c − z)(l2

− z2)− h2. (12.3)

This determines the variation of z with time t . If we now consider the cubic

ϕ(z) = 2g(c − z)(l2
− z2)− h2,

then (12.3) reduces to
l2 ż2

= ϕ(z). (12.4)

For the particle to be in motion we must have that the component of its velocity along
the z-axis is real, and that the corresponding initial velocity is non-zero. Therefore,
ϕ(z) > 0. Moreover, it is easy to see that

ϕ(−l) = −h2, ϕ(l) = −h2, ϕ(∞) = ∞.

Denoting these zeroes by z1, z2 and z3, respectively, then it follows that

−l < z1 < z0 < z2 < l < z3 < ∞.

The zero z3 does not lie on the sphere, so the particle moves between an upper hori-
zontal plane z = z1 and a lower horizontal plane z = z2, touching these planes in turn
when z = 0.
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By (12.4), we have that ż2 is equal to a cubic in z, so z must be an elliptic function
of t . We now wish to bring (12.3) into the form{

℘′(u)
}2

= 4℘(u)3 − g2℘(u)− g3, (12.5)

for a variable u. Introducing z′ and c′ defined by z = lz′ and c = ac′, then (12.3)
becomes

l2 ż′
2

= 2gl(c′
− z′)(1 − z′2)−

h2

l2 . (12.6)

Next, we define t ′ by t = λt ′. It follows that (12.6) reduces to the form(
dz′

dt ′

)2

=
λ2

l2 2gl(c′
− z′)(1 − z′2)−

λ2h2

l2

= 4(c′
− z′)(1 − z′2)− h′2, (12.7)

where λ2
= 2l/g and h′

=
√
(2/ lg)h. If we take z′

= z′′
+ n then (12.7) takes the

form (
dz′′

dt ′

)2

= 4z′′3
− g2z′′

− g3, (12.8)

where n =
1
3 c′, and the invariants g2, g3 are given by

g2 =
4
3 (c

′2
+ 3), g3 = h′2

+
8
27 c′3

−
8
3 c′.

By putting z′′
= ℘(u), we obtain the form (12.5), and it follows that(

dz′′

dt ′

)2

= ±1,

where u = ±(t ′ + α) for a constant of integration α.

Now, ℘(u) is an even function, so taking the case u = t ′ + α, we have

z′′
= ℘(u) = ℘(t ′ + α). (12.9)

The zeroes of the cubic are all real, so if we take ω1 and ω2 to be the periods of ℘(u),
we have that ω1 is real, while the ω2 is purely imaginary. If e1, e2 and e3 are the roots
of 4z′′3

− g2z′′
− g3 = 0 and e1 > e3 > e2, then z′′

= e2 when z = z1, z′′
= e3 when

z = z2, and z′′
= e1 when z = z3.

Choosing t = 0 to be the instant at which the particle is at its highest level, we have
z = z1, and hence, z′′

= e2. If we now substitute in (12.9), we have ℘(α) = e2 and
α =

1
2ω2. Therefore, it follows that

z = lz′
= l℘

(√
g
2l

t +
1
2ω2

)
+

l
3

= l℘
(√

g
2l

t +
1
2ω2

)
+

1
6g
(v2

0 + 2gz0).

Now, by (12.1), we have

θ̇ =
h
r2 =

h
l2 − z2 ,
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as ρ2
+ z2

= l2. Hence,

θ̇ =
h
2a

(
1

a − z
+

1
a + z

)
=

h
2a2

(
1

1 − z′
+

1
1 + z′

)
,

with z′ defined as before.

Now, u = t ′ + α = (t/λ)+ α so u̇ = 1/λ. Therefore,

dθ
du

=
dθ
dt

dt
du

=
λh
2l2

{
1

1 − z′
+

1
1 + z′

}
.

If we define ℘(α) = −(1 +
1
3 c′) and ℘(β) = 1 −

1
3 c′, and as

z′
= z′′

+
1
3 c′

= ℘(u)+
1
3 l ′,

then
dθ
du

=
dθ
dt

dt
du

=
λh
2l2

{
1

℘(u)− ℘(α)
−

1
℘(u)− ℘(β)

}
. (12.10)

When z′
= ±1 or c′, then, from the definition of z′, and by (12.7), we have(

dz′

dt ′

)2

= ℘′2(u) = 4(c′
− z′)(1 − z′2)− h′2

= −h′2.

Hence,
℘′2(α) = ℘′2(β) = −h2,

and it follows that
℘′(α) = ℘′(β) = ih′.

Now, by (12.10)

2i
dθ
du

=
℘′(α)

℘ (u)− ℘(α)
−

℘′(β)

℘ (u)− ℘(β)

= ζ(u + β)− ζ(u − β)− 2ζ(β)− ζ(u + α)+ ζ(u − α)+ 2ζ(α).

After integration, we have

e2iθ
= −E2 σ(u + β)σ(u − α)

σ(u + α)σ(u − β)
e2{ζ(α)−ζ(β)}u, (12.11)

where −E2 is a constant of integration that can be determined by the initial conditions.

Finally, from the equation of the sphere

r2
= l2

− z2
= (l + z)(l − z) = −l2

{℘(u)− ℘(α)}{℘(u)− ℘(β)}. (12.12)
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12.2. Equations of motion of the spherical pendulum in Cartesian coordinates

THEOREM 12.2. The equations of motion of the spherical pendulum in Cartesian
coordinates are

x + iy = El
σ(u − α)σ(u + β)

σ 2(u)σ (α)σ (β)
e{ζ(α)−ζ(β)}u,

x + iy = −
l
E
σ(u + α)σ(u − β)

σ 2(u)σ (α)σ (β)
e{ζ(α)−ζ(β)}u,

where t = λu and α, β, λ, E and l are constants.

Proof (Dutta & Debnath, 1965). We define Cartesian coordinates by x = ρ cos θ and 3

y = ρ sin θ . From (12.11), we have

e2iθ
=

x + iy
x − iy

= −E2 σ(u + β)σ(u − α)

σ(u + α)σ(u − β)
e2{ζ(α)−ζ(β)}u .

Also, from (12.12), we obtain

ρ2
= (x + iy)(x − iy) = −a2

{℘(u)− ℘(α)}{℘(u)− ℘(β)}.

3Dutta & Debnath (1965) 91–92.
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Chapter 13

Elliptic Curves and Cryptography

He, first of men, with awful wing pursu’d the comet thro’ the long elliptic
curve

JAMES THOMSON, A Poem Sacred to the Memory of Sir Isaac Newton 1

If we have a field K with characteristic not equal to 2 or 3, then we define an elliptic
curve over this field to be a non-singular projective cubic C of the form

Y 2
= X3

+ aX + b, (13.1)

where a and b are in K . If the characteristic of the field is equal to 2 then we have that
C is instead defined by

Y 2
+ cXY + dY = X3

+ aX + b, (13.2)

with c and d also in K .

13.1. Addition on the cubic 2

Let P1 and P2 be rational points on a non-singular cubic C over an arbitrary field and
choose a point O also on C . Let P3 be the third point of intersection with C of the line
through P1 and P2. Let P4 be the third point of intersection of the line through O and
P3. Then we define the addition of P1 and P2 by

P1 + P2 = P4.

If two or more points coincide, for example P1 = P2, then to construct the line analo-
gous to P1 P2 above we take the tangent at P1.

13.2. The group law

THEOREM 13.1. The construction in Section 13.1 defines an Abelian group law on
C, with O as its neutral element.

Proof (Cassels, 1991). The difficult part of this proof is associativity. However, we 3

1James Thomson (1700–1748).
2Cassels (1991) 27.

81



P1

P2

P3

P4

O

Figure 13.1. The group law.

also need a neutral element, an inverse, and, as we seek to prove to prove that the
construction is an Abelian group, commutativity.

It is clear that
P1 + P2 = P2 + P1,

and
O + P1 = P1,

for all P1.

Now, consider the tangent at O . Let the third point of intersection of this tangent at
O to be P1. Let P−

2 to be the third point of intersection of the line through P1, and P2.
It then simply follows that

P2 + P−

2 = O,

thus constructing an inverse P−

1 for any P1.

We now need to show

(P1 + P2)+ P3 = P1 + (P2 + P3).

Geometric argument. Let O , P1, P2 and P3 be given and consider the situation in
Figure 13.2. We have that L1, L2, . . . , L6 are lines and P1, P2, . . . , P6 are points on
C . All of these except P6 and P9 are intersections of two lines.

It follows that P1 + P2 = P5, and so (P1 + P2)+ P3 is the third point of intersection
of the line through O and P6. Similarly, P1 +(P2 + P3) is the third point of intersection
of the line through O and P9. To prove associativity, we therefore need that P6 and P9
are not as in Figure 13.2, but instead coincide in Q, the intersection of L2 and L4.

Next, we need the following result of algebraic geometry:

THEOREM 13.2. Let P1, P2, . . . , P8 be eight points of the plane in general position. 4

Then there is a ninth point P9 such that every cubic curve through P1, P2, . . . , P8 also
passes through P9.
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Figure 13.2. Proving the associativity of the group law.

Proof (Cassels, 1991). A cubic form F(X) has ten coefficients. The equation F(X) =
5

0 imposes a linear condition on the coefficients, and passing through the eight points
P1, P2, . . . , P8 imposes eight conditions. Hence, if F1(X) and F2(X) are linearly in-
dependent forms through the eight points, then we have that any third equation, which
we denote F3(X), is of the shape

F3(X) = λF1(X)+ µF2(X).

Now, as F1(X) = 0 and F2(X) = 0 have nine points in common, so F3(X) also passes
through all of them.

To apply Theorem 13.2, we let the equation for line L1 to be L1(X) = 0 and
consider the two reducible cubics

F1(X) = L1(X)L2(X)L3(X) = 0,
F2(X) = L4(X)L5(X)L6(X) = 0.

The cubic C passes through eight of the points of intersection of F1(X) and F2(X) and
so, by Theorem 13.2, must pass through the ninth. Hence, P6 = P9, as required.

Algebraic argument. Suppose we have a linear form L1(X). This goes not give a
meaningful function on the curve C as the coefficients X are homogeneous. However,
if we also have another linear form, L6(X), then the quotient

G(X) =
L1(X)
L6(X)

does give something meaningful.

Now, again referring to Figure 13.2, we have L1(X) = 0 passes through P1, P2
and P4, and L6(X) = 0 passes through O , P4 and P5 with all being points on C .
Therefore, G(X) has a zero at P1 and P2 and a pole at O and P5. As both L1(X) = 0
and L6(X) = 0 pass through P4, then these zeroes of the linear form cancel, and we
have neither a zero nor a pole. The notion of the order of a zero or pole at a non-singular

3Cassels (1991) 28–30.
4An arrangement of points is in general position if no three are collinear. Three points are said to be

collinear if they lie on a single straight line.
5Cassels (1991) 29.
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point of an algebraic curve generalizes in an obvious way to that of the order of zero
or pole of a rational function of a single variable. Clearly, we have simple zeroes at P1
and P2, and simple poles at O and P5 and the equation

P5 = P1 + P2

is equivalent to the existence of such a function. Similarly, we have

R = (P1 + P2)+ P3

is equivalent to the existence of a function with simple poles at P1, P2 and P3, a double
zero at O and a simple zero at a point R. It follows that

(P1 + P2)+ P3 = P1 + (P2 + P3).

13.3. The simplified group law 6

Suppose we have the cubic (13.2). If we take the point with homogeneous coordinates
[0, 1, 0] as the identity, then the group law simplifies, and Theorem 13.1 can be restated
as follows:

THEOREM 13.3. There is a unique Abelian group law on C, with O = [0, 1, 0] as its
neutral element, the map from (x, y) to (x,−y) as its inverse, and P1 + P2 + P4 = O
if and only if P1, P2 and P4 are collinear.

The group law in this form corresponds to the situation in Figure 13.3. If the field
is the real numbers, we have a simple description of the point P3: If we draw a line
through P1 and P2 (or the tangent line to the curve at P1 if P1 = P2) and denote the
third point of intersection with C , then we have P4 is the negative of P3.

We can derive algebraic formulæ from this description which can be applied over 7

6Reid (1988) 39–40.

P1

P2

P3

P4

y

-y

Figure 13.3. The simplified group law.
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any field K . If C has the equation (13.2), and if we let

P1 = (x1, y1), P2 = (x2, y2), P4 = (x4, y4),

then {
x4 = −x1 − x2 + α2

+ cα,

y4 = −cx4 − d − y1 + α(x1 − x4),
(13.3)

where

α =

{
(y2 − y1)/(x2 − x1) ifP1 6= P2,

(3x2
1 + a − cy1)/(2y1 + cx1 + d) ifP1 = P2.

If C is an elliptic curve described by (13.1) then we can set c = d = 0, and the formulæ
simplify further.

13.4. Abel’s method of proving addition formulæ

The method of addition on curves in the previous section was used by Abel to estab-
lish addition formulæ for the elliptic functions. We consider the case of the addition
formula for the Weierstrass elliptic function: 8

THEOREM 13.4. If z1 + z2 + z3 = 0, then the addition formula for the Weierstrass
elliptic function is ∣∣∣∣∣∣

℘(z1) ℘′(z1) 1
℘(z2) ℘′(z2) 1
℘(z3) ℘′(z3) 1

∣∣∣∣∣∣ = 0.

Geometric proof (Whittaker & Watson, 1927). We consider the intersections of the cu- 9

bic curve
y2

= 4x3
− g2x − g3,

with a variable line
y = mx + n.

If we take a point (x1, y1) on the cubic, then the equation

℘(z)− x1 = 0

has two solutions, −z1 and z1, parameters of (x1, y1) on the cubic. All other solutions
are congruent to these two.

Now, since ℘′2(z) = 4℘3(z)− g2℘(z)− g3, we have

℘′2(z1) = y2
1 ,

7Koblitz (1987) 204.
8Analogous geometric proofs of the addition formulæ for the Jacobi elliptic functions use either the

intersections of a twisted curve defined by the equations x2
+ y2

= 1 and z2
+ k2x2

= 1 with a variable
plane lx + my + nz = 1, or alternatively the intersections of the curve y2

= (1 − x2)(1 − k2x2) with a
variable curve y = 1 + mx + nx2.

9Whittaker & Watson (1927) 442–443. The original proof can be found in Abel (1881).

85



and choose z1 to be the solution for which ℘′(z1) = y1. We denote the intersections of
the cubic with the variable line by x1, x2 and x3. These are the roots of

ϕ(x) = 4x3
− g2x − g3 − (mx + n2)2 = 4(x − x1)(x − x2)(x − x3) = 0.

The variations in δx1, δx2 and δx3 of x1, x2 and x3 due to the position of the line are
a consequence of small changes δm and δn in the coefficients m and n. These can be
described by the equation

ϕ′(xi )δxi +
∂ϕ

∂m
δn = 0,

where i = 1, 2, 3. Hence,

ϕ′(xi )δxi = 2(mxi + n)(xiδm + δn),

and it follows that
3∑

i=1

δx1

mxi + n
= 2

3∑
i=1

xi
δm + δn
ϕ′(xi )

,

provided that ϕ′(xi ) 6= 0.

Now, we consider the expression

x(xδm + δn)
ϕ(x)

.

By putting this into partial fractions, we have

x(δm + δn)
ϕ(x)

=

3∑
i=1

Ai

(x − xi )
,

where

Ai = lim
x→xi

x(xδm + δn)
x − xi

ϕ(x)

= xi (xiδm + δn) lim
x→xi

x − xi

ϕ(x)
,

for i = 1, 2, 3. By applying Taylor’s theorem, we have

Ai =
xi (xδm + δn)

ϕ′(xi )
.

If we put x = 0, it follows that
3∑

i=0

δxi

yi
= 0.

Therefore, we have that the sum of the parameters z1, z2 and z3 is constant and inde-
pendent of the position of the line.

By varying the line so that all the points of intersection move off to infinity, we can
see that z1 + z2 + z3 is equal to the sum of the parameters when the line is at infinity.
However, when the line is at infinity, each of z1, z2 and z3 is a period of ℘(z) and it
clearly follows z1 + z2 + z3 is also a period of ℘(z).

Hence, the sum of the parameters of three collinear points on the cubic is congruent
to zero.
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Cryptosystem Mathematical Problem Method for Solving

Integer factorization Given a number n, find its prime factors Number field sieve

Discrete logarithm Given a prime n, and numbers g and h,
find x such that h = gx (mod n)

Number field sieve

Elliptic curve discrete logarithm Given an elliptic curve C , and points P
and Q on C , find x such that Q = x P

Pollard-rho algorithm

Table 13.1. Comparison of various cryptosystems.

13.5. Elliptic curve cryptography 10

The idea of cryptography using elliptic curves was first suggested in mid-1980s as
an alternative to the more traditional systems based on the factoring of primes (see
Table 13.1). The main advantage of elliptic curve cryptography lies in the difficulty 11

of the underlying mathematical problem, that of the factoring of elliptic curves. The
best known way to solve this problem is fully exponential and so, compared to other
systems, substantially smaller key sizes can be used to obtain equivalent strengths.
Moreover, the elliptic curve cryptosystem is considered to require smaller bandwidth
requirements and so may be the system of choice in an emerging trend towards mobile
computing.

The essence of elliptic curve cryptography is that the plain text to be encrypted is
embedded in points Pm on an elliptic curve over a field G F(q), for large q . Repeated
applications of the group law, or more specifically the formulæ (13.3), are used to
calculate multiples of these points which are then transmitted. There are various ways
that this process is carried out, we describe two of these.

Massey-Omura system. Suppose that a user A would like to send a message m, em-
bedded as points of an elliptic curve, to a user B. Given our curve C of order N , and
our embedding Pm , user A chooses a random integer c satisfying 0 < c < N and
gcd(c, N ) = 1. User A then calculates cPm as described above and transmits this to B.
Next, B chooses a random integer d satisfying the same properties as c, and similarly
calculates and transmits d(cPm) back to A. Finally, A transmits c′(dcPm) = d Pm
where c′c ≡ 1 (mod N ) back to B. To decrypt the message, B computes d ′d Pm for
d ′d ≡ 1 (mod N ) to recover Pm .

ElGamal system. This is similar to that of Massey-Omura except that we do not need to
know N . We assume the same construction as before, except that we need an additional
publicly known point Q on C . Now, user B chooses any integer a and publishes aG.
To transmit the message m, user A chooses a further random integer k, and sends to
B the pair of points (kG, Pm + k({aG}). In this case, to decrypt the message, user B
multiplies the first point of the pair by a, and then subtracts the result from the second
point of the pair, thus recovering P .

To break either system requires the solution of the elliptic curve analogue of the
discrete logarithm problem:

10Koblitz (1987) 203–209.
11Elliptic curve cryptography is more correctly termed elliptic curve discrete logarithm cryptography,

though it is usually abbreviated ECC or EC2.
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Given an elliptic curve C defined over G F(q) and two points P and Q in C, find an
integer x such that Q = x P, if such x exists.

As the existing methods for solving the classical discrete logarithm problem de-
pend on a finite Abelian group, they can also be applied to the elliptic curve analogue.
However, these methods are generally much slower because of the added complexity
of the addition operation, and the fact that only those attacks aimed at a general group
have so far proven to be of any use.
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Chapter 14

The Nine Circles Theorem

A lesser known elementary gem

SERGE TABACHNIKOV

A chain of circles is a sequence S1, S2, . . . , Sn of circles in which each circle touches
both its neighbours. To be precise, S1 touches S2, S2 touches S3, . . . , Sn−1 touches
Sn . A chain is said to be closed if the last circle Sn touches the first circle D1. From
this definition it may seem surprising that a geometric problem so simple and easily
visualized could ever require the use of elliptic functions to obtain proofs, but this is
indeed the case. Perhaps even more surprising, it is the Weierstrass elliptic function
that is used.

14.1. A triangle and six circles

THEOREM 14.1. The Money-Coutts theorem. Let A1 A2 A3 be a triangle in the plane
and let S1 be any circle which touches the sides A3 A1 and A1 A2 of the triangle. Con-
sider then the following triangular chain of circles: S2 is a circle touching A1 A2, A2 A3
and S1, S3 is a circle touching A2 A3, A3 A1 and S2, S4 is a circle touching A1 A2, A2 A3
and S3, S5 is a circle touching A1 A2, A2 A3 and S4, S6 is a circle touching A2 A3, A3 A1
and S5, S7 is a circle touching A3 A1, A1 A2 and S6. There are various choices avail-
able at each stage, but if the choice at each stage is appropriately made, then the last
circle S7 coincides with the first circle S1 and we have a closed chain.

To reduce the number of choices at each stage, we will first add the further con-
straint that each of the circles should lie within the triangle. This gives us at most one
choice for each successive circle.

Proof (Evelyn et al., 1974). Let a, b and c denote the lengths of sides A2 A3, A3 A1 and 1

A1 A2 of the triangle and let l, m, n, l ′, m′, n′ and l ′′ denote the lengths of the tangents
to S1, S2, S3, S4, S5, S6 and S7 from A1, A2, A3, A1, A2, A3 and A1, respectively.

We begin by relating l and m and then extend this relation to link each of the other
tangents.

Figure 14.2 shows that if X and Y are the centres of S1 and S2, and J and K are
their points of contact with A1 A2, we have A1 J = l and A2 K = m. Since X is on the

1Evelyn et al. (1974) 49–54. An alternative proof can be found in Maxwell (1971).
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Figure 14.1. The Money-Coutts theorem.

internal bisector of the angle A1, we have that the radius of S1 is

J X = l tan 1
2 A1.

Similarly, the radius of S2 is
K Y = m tan 1

2 A2.

Now, from elementary geometry, if two circles of radii r1 and r2 touch externally, then
the length of each common tangent is 2

√
r1r2, so we have

J K = 2
√

lm tan 1
2 A1 tan 1

2 A2.

As A1 A2 = A1 J + A2 K + J K , it follows that

c = l + m + 2
√

lm tan 1
2 A1 tan 1

2 A2. (14.1)

If we define s =
1
2 (a + b + c), then by the half angle formulæ for a triangle we have

tan 1
2 A1 tan 1

2 A2 =

√
(s − b)(s − c)

s(s − a)

√
(s − c)(s − a)

s(s − b)
=

s − c
s

.

A1

A2 A3

K

J

Figure 14.2. Obtaining a relation between tangents to the first two circles.
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T1 T2 T3 T4 T5 T6
h f g h f g
p q r p′ q ′ r ′

q r p′ q ′ r ′ p′′

ψ θ ϕ ψ θ ϕ

Table 14.1. Relations between lengths and angles in the proof of the Money-Coutts theorem.

Then (14.1) reduces to
c = l + m + 2

√
mn(s − c)/s. (14.2)

Thus, we obtain a relation between l and m. The same argument can be applied to the
other circles to give relations connecting m and n, . . . , n′ and l ′′ and we have

a = m + n + 2
√

mn(s − c)/s,

and so on, to give six relations in all.

We now write p, q, r , p′, q ′, r ′ and p′′ for the positive square roots of l, m, n, l ′,
m′, n′ and l ′′, and, similarly, f , g, h and t for the square roots of a, b, c, s. We then
define obtuse angles θ , ϕ and ψ by

cos θ = −

√
1 −

a
s

= −

√
1 −

f 2

t2 , sin θ =
f
t
,

cosϕ = −

√
1 −

b
s

= −

√
1 −

g2

t2 , sinϕ =
g
t
,

cosψ = −

√
1 −

c
s

= −

√
1 −

h2

t2 , sinψ =
h
t
. (14.3)

This is perfectly valid as the quantities under the square root are positive and between
zero and 1. Therefore, (14.2) reduces to

h2
= p2

+ q2
− 2pq cosψ. (14.4)

The five other equations can be constructed by substituting for h, p, q and ψ as indi-
cated in Table 14.1.

Now, (14.1), describes the cosine rule so we can construct a triangle T1 with sides
p, q , h and an angle ψ opposite to h. Similarly, we have T2, T3, T4, T5 and T6 corre-
sponding to the other relations in Table 14.1.

Once more using elementary geometry, we have that the diameter of the circumcir-
cle of a triangle is equal to the length of any side divided by the sine of the opposite
angle. Therefore, for T1 we have diameter h/ sinϕ, which by (14.3) is equal to t .
Moreover, it is similarly easy to see that the circumradii of the other triangles is also t .

From this it follows that if we fit the triangles T1, T2 so that their sides of length q
coincide, then their circumcircles also coincide. If we proceed in a similar fashion we
can fit all six triangles together into the same circumcircle. By removing certain lines
we can see in Figure 14.3 that we have an open heptagon X0 X1 . . . X7 inscribed in a
circle, with angles ψ at X2 and X5, angles θ at X2 and X4, and angles ϕ at X3 and X6.
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Figure 14.3. Fitting all six triangles into the same circumcircle.

Now, the triangles X0 X2 X4 and X3 X5 X7 are congruent, so the angles X0 X2 X4
and X3 X5 X7 are equal. Subtracting these angles from the equal angles X1 X2 X3 and
X4 X5 X6 we have

6 X0 X2 X1 + 6 X3 X2 X4 = 6 X3 X5 X4 + 6 X6 X5 X7.

But X3 X2 X4 and X3 X5 X4 are also equal so it follows that

6 X0 X2 X1 = 6 X6 X5 X7.

Therefore, X0 X1 and X6 X7 subtend angles at the circumference of the circle, so these
chords are equal in length.

Hence, p = p′′, and it follows that l = l ′′.

Now, we relax the condition that circles lie inside the triangle, and instead only
require that their centres lie on the internal bisectors of the respective angles of the
triangle. In this case, for any given choice of S1, there are three possible choices for
S2, two of which may not be real.

Proof (Evelyn et al., 1974). We first consider the case that we choose S2 such that it 2

touches A1 A2 at the same point as S1, and so touches S1 internally. If we make this
special choice, then we can also choose S3 in a similar way so that it touches A2 A3 at
the same point as S2. Building up a complete chain by making the analogous choice
for each successive circle S4, S5, S6 and S7, it follows that it necessarily closes up (see
Figure 14.4).

Using the same notation as in the earlier proof, we immediately have

l + m = c, l + m′
= c,

m + n = a, m′
+ n = a,

n + l ′ = m, n′
+ l ′′ = b.

2Evelyn et al. (1974) 54–58.
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Figure 14.4. A chain constructed by taking special choices at each stage.

Hence, l = l ′′.

Now, the other two choices for S2 are real if and only if S2 does not lie entirely
outside the triangle. With the preceding notation, we have that l and m still satisfy
(14.2), though we must now consider both the positive and negative square roots. These
correspond to the two possibilities for S2. Writing (14.1) in the form

s(c − l − m)2 = 4(s − c)lm, (14.5)

then, as l is given, this is a quadratic for m and has real roots lying between zero and s
if and only if l lies between zero and s.

If we construct a triangular chain, taking one of these two choices for the follow-
ing circle, then after six steps we appear to have 64 possibilities for S7 for any given
S1. However, not all of these possibilities will coincide with S1. To determine which
choices will give a closed chain, we can use the method of the previous proof, or alter-
natively consider the following argument.

We replace l, m, n, l ′, m′, n′ and l ′′ by λ, µ, ν, λ′, µ′, ν′ and λ′′ defined by

l = s sin2 λ, m = s sin2 µ, . . . , l ′′ = s sin2 λ′′,

where λ, µ, . . . , λ′′ are determined modulo π . In terms of these new variables, (14.5)
reduces to

cos 2µ− cos(2λ± 2ψ),

where cosψ = −
√

1 − (c/s).

Therefore,
µ = ±λ± ψ (mod π),

and similarly,

ν = ±µ± θ (mod π), . . . , λ′′
= ±ν′

± ϕ (mod π).

Hence,
λ′′

= ±λ+ (±ψ ± θ ± ϕ ± ψ ± θ ± ϕ) (mod π),

where successive choices of sign correspond with the successive choices of circle. In
order for the chain to close up, we can make the first three choices arbitrarily, but must
then choose the final three so that the terms cancel in pairs to give λ′′

= ±λ.
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Figure 14.5. The Money-Coutts theorem for pentagons.

It follows that of the 64 possible chains in this case, we have eight which will close
up. If we have our original constraint that the chain of circles lies inside the triangle
then that chain must be one of these eight.

14.2. Polygons and circles

We next consider whether Theorem 14.1 extends to polygons other than triangles. An
example of this would be a regular n-gon with vertices A1, A2, . . . , An . By symmetry,
the circles Si−1 and Si+1 are congruent for all i = 1, 2, . . . , n. It follows that for such a
regular n-gon we have S1 coincides with S2n+1 if n is odd, and S1 coincides with Sn+1
if n is even. This behaviour is shown in Figure 14.5.

Unfortunately, Figure 14.6 illustrates that this periodicity is destroyed for certain
perturbations of a regular n-gon. However, there is a subclass of irregular n-gons for
which periodicity holds. We let A1, A2, . . . , An be the vertices of a convex n-gon P ,
and let 2α be the interior angle at Ai . We also let ai = |Ai Ai+1|. As in the first

Figure 14.6. Perturbation of a regular pentagon.
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Figure 14.7. Fixing the choice of circles at each stage.

part of our proof of Theorem 14.2, we inscribe a circle S1 in the angle of the vertex
Ai for i = 1, 2, . . . , n, and inscribe a further circle S1 in A2, tangent to S1, and then
continuing cyclically. If we let Oi be the centre of Si and ri its radius, we fix the choice
of circles at each step by assuming that the orthogonal projections Bi and Bi+1 of Oi
and Oi+1 on the line Ai Ai+1 fall on the segment Ai Ai+1, and that Bi is closer to Ai
than Bi+1. This is illustrated in Figure 14.7.

We can now define the class of n-gons for which Theorem 14.1 extends. Assume
that n ≥ 5 and αi +αi+1 >

1
2π for all i = 1, 2, . . . , n. Let Di be the intersection of the

lines Ai−1 Ai and Ai+1 Ai+2. Referring to Figure 14.8, we consider the escribed circles 3

of the triangles Ai−1 Ai Di−1 and Ai Ai−1 Di that are tangent to the sides Ai Di−1 and
Ai Di , respectively. If these circles coincide for all i , then we have a nice n-gon.

THEOREM 14.2. Let P be a nice n-gon. If n is odd then the sequence of circles Si is
2n-periodic: S1 = S2n+1. If n is even assume that

n∏
i=1

(1 +
√

1 − cotαi cotαi+1)
(−1)i

= 1, (14.6)

then the sequence of circles is n-periodic: S1 = Sn+1.

Proof (Tabachnikov, 2000). In Figure 14.7, we have 4

Bi Bi+1 = 2
√

riri+1, |Ai Bi | = ri cotαi , |Ai+1 Bi+1| = ri+1 cotαi+1,

and it follows that

ri cotαi + 2
√

riri+1 + ri+1 cotαi+1 = ai . (14.7)

If we now introduce the variables

ui =
√

ri cosαi , ei =
√

tanαi tanαi+1, ci =
√

ai , (14.8)

where ei > 1, then (14.7) becomes

u2
i + 2ei ui ui+1 + u2

i+1 = c2
i .

3The circle tangent to two lines extended from non-adjacent sides of a given triangle, and also to the other
side of the triangle is known as an escribed circle.

4Tabachnikov (2000) 202–206.
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Figure 14.8. Defining nice n-gons.

Solving this in hyperbolic functions, we have

ui

√
c2

i + (e2
i − 1)u2

i+1 + ui+1

√
c2

i + (e2
i − 1)u2

i = ci . (14.9)

We introduce niceness by the following result:

THEOREM 14.3. An n-gon P is a nice if and only if there exists a constant ρ > 0
such that

ai = ρ2(tanαi tanαi+1 − 1),

for all i − 1, 2, . . . , n.

Proof (Tabachnikov, 2000). We consider the escribed circle, of radius r1, of the trian- 5

gle Ai Ai+1 Di shown in Figure 14.9. By elementary geometry, we have

|E Ai | = ri cotαi , |E Ai + 1| = ri tanαi+1.

It follows that
ri tanαi+1 = ri cotαi + ai ,

and we obtain ai

tanαi tanαi+1 − 1
=

r1

tanαi
. (14.10)

5Tabachnikov (2000) 204.

Ai

E

r
O

Di

Ai+1

Ai-1

Figure 14.9. Proving a theorem about nice n-gons.

96



Similarly, let r2 be the radius of the escribed circle of the triangle Ai−1 Ai Di−1, then

ai−1

tanαi−1 tanαi − 1
=

r2

tanαi
. (14.11)

The n-gon is nice if and only if r1 = r2, so, by (14.10) and (14.11), this corresponds to

ai

tanαi tanαi+1

being independent of i , as required.

By application of this theorem, and by (14.8), we have

ai = ρ2(tanαi tanαi+1 − 1), c2
i = ρ2(e2

i − 1).

Therefore, (14.9) can be written as

ui

ρ

√
1 +

u2
i+1

ρ2 +
ui+1

ρ

√
1 +

u2
i

ρ2 =
ci

ρ
.

If we let xi = sinh−1(ui/ρ), then we have

sinh(xi + xi+1) = ci/ρ. (14.12)

Now, we denote the family of circles inscribed in the i th angle of P by Fi . Then
we have a map Ti : Fi −→ Fi+1 that takes Si to Si+1. Using xi as a coordinate in Fi ,
then by (14.12) we have that Ti is the reflection

Ti (xi ) = xi+1 = sinh−1(ci/ρ)− xi .

If n is odd, the map TnTn−1 . . . T1 : F1 −→ F1 is a reflection, and its second iteration
is the identity. If n is even, then the same map is the translation taking x1 to

x1 +

∑
(−1)i sinh−1(ci/ρ).

By Theorem 14.3, the vanishing of this alternating sum is equivalent to (14.6).

If ei = 1 in (14.8), then we have the case that the (i − 1)st and (i + 1)st sides of
the n-gon are parallel. Therefore, we have

ui + uu+1 = ci .

It follows that if P is a parallelogram, then the sequence of circles is not periodic,
unless P is a rhombus, in which case S1 = S5. In fact, we have the following result:

THEOREM 14.4. Suppose P is a parallelogram, then, for an initial circle S1, the 6

sequence of circles Si is preperiodic with eventual period 4.

6Troubetzkoy (2000) 289.
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If we instead consider an open quadrilateral, then we may instead have that the
behaviour of sequence of circles becomes chaotic. We can use the concept of the
topological entropy of the map between circles in the sequence to define this. This is
a topological invariant that measures the dynamical complexity of a map. A definition
of chaos that follows is positivity of topological entropy. Therefore, we can state the
following result:

THEOREM 14.5. There is an open set of quadrilaterals for which the circle map has 7

positive topological entropy.

14.3. The nine circles theorem

Suppose that the sides of the triangle in Theorem 14.1 are made into arcs of circles.
This chain, illustrated in Figure 14.10, is still periodic, which we can state as follows:

THEOREM 14.6. The nine circles theorem. Let C1, C2 and C3 be three circles in gen-
eral position in the plane and let S1 be any circle which touches C1 and C2. Consider
then the following chain of circles: S2 is a circle touching C2, C3 and S1; S3 is a circle
touching C3, C1 and S2; S4 is a circle touching C1, C2 and S3; S5 is a circle touching
C2, C3 and S4; S6 is a circle touching C3, C1 and S5; S7 is a circle touching C1, C2
and S6. There are a finite number of choices available at each stage, but if the choice at
each stage is appropriately made, then the last circle S7 coincides with the first circle
S1 and we have a closed chain.

To summarize, we have a symmetric system where each circle is touched by four
others. We can represent this by the following square array, in which two circles touch
if and only if they do not appear in the same column:

C1 C2 C3
S5 S3 S1
S2 S6 S4

To describe the appropriate choices mentioned in the theorem, we first need the fact
that given three circles in general position, eight circles can be described to touch all
three. However, in this case, two of the three given circles already touch, and so this
is reduced to six, two counting doubly and four simply. For example, there are two
circles of the coaxal family determined by C2 and S1 which also touch C3. These are 8

the two choices which count doubly, and we can describe them as special choices for
S2. The four other possible choices for S2 will be referred to as general choices. We
can make this distinction at each stage in the construction of the chain.

7Troubetzkoy (2000) 290.
The nine circles theorem was discovered by a group of friends, including amateur mathematicians

G. B. Money-Coutts and C. J. A. Evelyn, who used to meet in the cafés of Piccadilly in London to dis-
cuss geometry. They first conjectured the special case of a triangle and six circles given in Theorem 14.1,
and then, by careful drawing, found that by replacing each side of the triangle with a circle, the more general
result of Theorem 14.6 appeared also to be true. As a result of this, this arrangement of circles has been
named a Money-Coutts configuration. The proof using elliptic functions was formulated by a third member
of the party, professional mathematician J. A. Tyrrell and his research student M. T. Powell.

8Circles which share a radical axis with a given circle are said to be coaxal. The centres of coaxal circles
are collinear.

98



C3

C2

C1

S1

S2

S3

S4

S5

S6

Figure 14.10. The nine circles theorem.

Now, if a circle S is drawn to touch two given circles, then the line joining the
two points of contact necessarily passes through one of the centres of similitude of the 9

given circles, and so we may say that S belongs to that centre of similitude. Of the six
possible choices for S2, there are three choices (one special and two general) belonging
to each centre of similitude.

Finally, we know that the centres of similitude of three circles, taken in pairs, are
the six vertices of a complete quadrilateral. Using this and the earlier facts, we can
complete the statement of Theorem 14.6 as follows:

Select three collinear centres of similitude (one for each pair of circles C1, C2 and
C3), insisting that at every stage in the construction of the chain, the circle Si belongs
to the appropriate one of these fixed centres of similitude. If at each stage we make the
special choice then the chain will close up. If we make the general choice, and if S2,
S3 and S4 are arbitrarily chosen, then it is always possible to choose S5 and S6 so that
the chain closes up.

The consequence of this is that, for a given position of S1, there are eighteen chains
which close up, of which two are special and sixteen general.

Proof (Tyrrell & Powell, 1971). Let Q be a projective model of the system of circles 10

9The point of intersection of the two external common tangents is called the centre of similitude of the
two circles.
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in the plane. This is a non-singular quadric surface, and we have a birational corre-
spondence between Q and the plane, in which plane sections of Q correspond to the 11

circles in the plane. Importantly, if two plane sections of Q touch then the correspond-
ing circles in the plane also touch. Therefore, if we formulate the theorem in terms of
plane sections of Q, then by proving this reformulation as a theorem of complex pro-
jective geometry, then the original theorem about circles automatically follows. Now,
the rule of choice for the plane sections, corresponding to the rule in the plane covering
the three fixed collinear centres of similitude, is to select three of the size cones with
collinear vertices, and, every stage in the construction of the chain, to choose a section
which touches the appropriate one of these cones.

We next consider a system of homogeneous coordinates [x, y, z, w] in Q defined
such that the planes of C1, C2 and C3 are given by x = 0, y = 0 and z = 0, respectively,
and in which w = 0 is the polar plane of the point of intersection of the planes C1, C2
and C3. By the hypothesis of generality, we can assume that the planes of C1, C2 and
C3 are linearly independent and that the coefficients of x2, y2 and z2 are non-zero.
Therefore, by an appropriate choice of unit point, the equation of Q reduces to the
form

x2
+ y2

+ z2
− 2yz cosα − 2zx cosβ − 2xy cos γ − w2

= 0,

where α, β, γ are constants. It follows that the equations of the pairs of cones through
(C1,C2), (C2,C3) and (C3,C1) are respectively

x2
+ y2

+ z2
− 2yz cosα − 2zx cosβ + 2xy cos(α ± β)− w2

= 0,

x2
+ y2

+ z2
+ 2yz cos(β ± γ )− 2zx cosβ − 2xy cos γ − w2

= 0, (14.13)

x2
+ y2

+ z2
− 2yz cosα + 2zx cos(γ ± α)− 2xy cos γ − w2

= 0.

These are collinear if we take all three choices of sign as negative, or if we take two as
positive and one as negative. Since changing the sign of one of the constants is equiv-
alent to changing two of the three sign alternatives, and does not effect the equation of
Q, then without loss of generality, we can take all three to be negative.

10Tyrrell & Powell (1971) 70–74.
11It is easier to visualize the birational correspondence as being similar to the stereographic projection in

Figure 14.11, but in a higher dimension (see also Baker (1925)). The stereographic projection is a map that
projects each point on the sphere onto a plane tangent to the south pole along a straight line from the north
pole.

Figure 14.11. The projective model.
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Figure 14.12. A special chain.

We now parameterize the sections C1, C2 and C3 in the circular forms

C1 : (0, cos θ, cos(θ − α), sinα), (14.14)
C2 : (cos(ϕ − β), 0, cosϕ, sinβ),
C3 : (cosψ, cos(ψ − γ ), 0, sin γ ),

identifying the sections S1, S2, . . . , S7 by the parameters θ , ϕ, ψ , θ ′, ϕ′, ψ ′ and θ ′′ of
the points at which they touch C1, C2, C3, C1, C2, C3 and C1, respectively. Hence, the
tangent plane to the cone (14.13) at the point (14.14) is given by the equation

x sin(θ − β)+ y sin(θ − α)− z sin θ + w = 0, (14.15)

and represents the plane of a variable section S1 touching C1 at the point (14.14) and
C2 at the point with parameter ϕ = β−θ . Similarly, we have that any section touching
C2 and C3 is cut by a plane of the form

− x sinϕ + y sin(ϕ − α)+ z sin(ϕ − β)+ w2
= 0. (14.16)

This is the plane of a possible position for S2 if we choose ϕ so that the sections given
by (14.15) and (14.16) touch.

Now, the condition on ϕ resulting for our wish that these sections touch is reducible.
One factor gives ϕ = β − θ and corresponds to the special choice for S2, while from
the other factor we obtain

cos(θ + ϕ − β)− 2(cosβ + ρ sinβ) cos θ cosϕ = 1, (14.17)

where ρ = tan 1
2 (α+β+γ ). For a given θ , this gives the values of ϕ which correspond

to the general choices for S2.

We first consider the case in which the special choice is taken at each stage, an
example of which is Figure 14.12. Permuting the parameters cyclically we have θ ′

=

α−ψ , and, therefore, that θ ′
= α− γ +β− θ . A further three steps in the chain gives

us a position of S7 that coincides with S1.

101



For the general case, we use rational projective parameters instead of the circular θ ,
ϕ and ψ previously employed. We can use any bilinear function of tan 1

2θ as a rational 12

parameter on C1, and in this case we choose a parameter t on C1 related to θ by

tan 1
2θ =

t + 2ρ − 3
t + 2ρ + 3

. (14.18)

Similarly, we choose rational parameters u on C2 and v on C3 given in terms of ϕ
and ψ , respectively, by formulæ analogous to (14.18). Therefore, (14.5) reduces to the
form

(t + u + b)(4btu − g3) = (tu + bt + bu +
1
4 g2)

2, (14.19)

where g2 = 48ρ2
+ 36, g3 = 64ρ3

+ 72ρ and b = 3 tan 1
2β − 2ρ.

We now need the following result:

THEOREM 14.7. If ℘(z1) = p1, ℘(z2) = p2 and ℘(z3) = p3 and z1 + z2 + z3 = 0,
then the addition formula for the Weierstrass elliptic function is

(p1 + p2 + p3)(4p1 p2 p3 − g3) = (p1 p2 + p2 p3 + p3 p1 +
1
4 g2)

2. (14.20)

Applying this, we therefore have that (14.19) is a form of the addition formula for
the Weierstrass elliptic function and so can be written in the transcendental form

℘−1(u) ≡ ℘−1(t)± ℘−1(b) (mod �), (14.21)

where � is the period lattice of ℘(u).

As ℘(u) is an even function of u of order two, ℘−1(u) is a two-valued function
with equal and opposite values. Therefore, for a given t , the right hand side of (14.21)
has four possible values modulo �. These are two equal and opposite pairs, and so u
is determined as a two-valued function of t .

Now, the reduction to the form in (14.21) gives us that the constants g2 and g3 on
which ℘(u) depends are functions of ρ only. As ρ is also an expression symmetric in
α, β and γ then it follows, by cyclically permuting the letters, that the parameters v
and t ′ of the sections S3 and S4 are given by

℘−1(v) ≡ ±℘−1(u)± ℘−1(c),

℘−1(t) ≡ ±℘−1(v)± ℘−1(a),

where ℘(u) is the same elliptic function as before, and where c = 3 tan 1
2γ − 2ρ and

a = 3 tan 1
2α − 2ρ. Therefore, we have

℘−1(t ′) ≡ ±℘−1(t)± ℘−1(a)± ℘−1(b)± ℘−1(c), (14.22)

with the eight equal and opposite pairs of values of the right hand side giving us t ′ as
an eight-valued function of t . Similarly, the parameter t ′′ is an eight-valued function of
the parameter t ′ of S4, and is given by

℘−1(t ′′) ≡ ±℘−1(t ′)± ℘−1(a)± ℘−1(b)± ℘−1(c). (14.23)

12A function of two variables is bilinear if it is linear with respect to each variable.
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Figure 14.13. Irreducible components of the curve consisting of pairs of circles (S1, S2). These
are rational curves (a) and an elliptic curve (b).

If we choose signs arbitrarily in (14.22), it is possible to choose signs in (14.23) to
obtain ℘−1(t ′′) ≡ ℘−1(t), from which it follows that t ′′ = t . This tells us that, for
a given S1, if we choose S2, S3 and S4 arbitrarily at each stage, then it is possible to
choose S5, S6 and S7 so that S7 coincides with S1.

Now, suppose we have three families of circles F1, F2, F3, which respectively
touch the pairs of circles (C1,C2), (C2,C3) and (C3,C1). If we consider the curve
consisting of pairs of circles (S1, S2) in F1 × F1 such that S1 is tangent to S2, then it
has two irreducible components that are rational curves of bidegree (1, 1) and another 13

irreducible component that is an elliptic curve of bidegree (2, 2). These are illustrated
in Figure 14.13. Therefore, we have elliptic curves E1 in F1 × F2, E2 in F2 × F3 and
E3 in F3 × F1. This allows us to restate Theorem 14.6 as follows:

THEOREM 14.8. Suppose that circles S1 in F1, S2 in F2, S3 in F3 and S4 in F4 are
chosen such that (S1, S2) is in E1, (S2, S3) is in E2, and (S3, S1) is in E3. Then it is
possible to choose circles S5 in F2, S6 in F3, and S7 in F1 in such a way that (S4, S5)
is in E1, (S5, S6) is in E2, and (S6, S7) is in E3, and such that S7 coincides with S1.

Proof (Barth & Bauer, 1996). We denote by π1 and π ′

1 the projections of E1 onto F1
14

and F2, respectively, and similarly denote the projections of E2 onto F2 and F3, and
E3 onto F3 and F1 by π2, π ′

2, π3 and π ′

3, respectively, having used the following result:

THEOREM 14.9. Given F1 and F2, the family F3 can be chosen in such a way that
the projections π ′

1, π2 as well as π ′

2, π3 and π ′

3, π1 have the same branch points F2, F3
and F1, respectively.

Hence, there are isomorphisms ϕ1 : E1 −→ E2, ϕ2 : E2 −→ E3 and ϕ3 : E3 −→

E1 such that π2ϕ1 = π ′

1, π3ϕ2 = π ′

2 and π1ϕ3 = π ′

3.

We define the curve E by identifying E1 = E2 = E3 using ϕ1 and ϕ2. It follows
that ϕ3 becomes an automorphism τ of E such that π1τ = π ′

3. Since the elliptic curve
E is determined by the intersection points of C1, C2 and two Apollonian circles of C1, 15

13The bidegree of a non-zero polynomial f (x, y) =
∑

m,n ai j xi y j is the maximal (i, j) such that ai j 6= 0.
14Barth & Bauer (1996) 16–20.
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C2 and C3, then, for general C1, C2 and C3, the curve E is also general. Therefore, the
automorphism τ is either a translation or an involution. By an appropriate choice of ϕ1

16

and ϕ2, we have that τ is a translation.

Now, we let σ1, σ2 and σ3 be the involutions of E that interchange the preimages
of π1, π2 and π3, respectively. We have S1 = π1(e) for some e in E , and then S2 =

π ′

1(α1e) where α1 is either the identity or σ1. Continuing in a similar way, we have

S4 = π ′

3(α3α2α1e) = π1(τα3α2α1e),

where α2 and α3 are defined in an analogous way to α1.

Now, we determine the circles S5, S6 and S7 such that (S4, S5), (S5, S6) and (S6, S7)
are in E . It follows that

S7 = π ′

3(β3β2β1τα3α2α1e) = π1(τβ3β2β1τα3α2α1e),

where β2 = α2, β3 = α3 and we choose β1 such that β3β2β1 is an involution. There-
fore, we obtain

τβ3β2β1τα3α2α1e = β3β2β1α3α2α1e = (α3α2β1)
2β1α1e = β1α1e.

Hence,
S7 = π1(β1α1e) = π1(e) = S1.

14.4. A biquadratic six cycle

In The nine circles theorem (Lyness, 1973), an attempt is made find an elementary
proof of Theorem 14.6 in the case that radii of the circles C1, C2 and C3. It relies upon
the existence of a biquadratic six cycle

Ti = (1 + k)t2
i − 2kti cotαi + (1 − k), Ti Ti+1 = (ti + ti+1)

2,

in which given t0, there are two values of t1, four values of t2 and eight values of
t3. Similarly, given t0, the cycle leads to two values of t−1 from which follows eight
values of t−3 that are equal to those of t3. Theorem 14.1 is then formulated with an

15Apollonian circles theorem. Let A and B be two distinct points in the plane, and let k be a positive real
number not equal to 1. Then the locus of points P that satisfies the ratio P A/P B = k is a circle whose
centre lies on the line through A and B.
If we include the point at infinity in the locus, then for every positive value k we have a generalized circle
known as an Apollonian circle, named after the geometer Apollonius of Perga (c 262–190 BC).

16An involution is a map that is its own inverse.
Perhaps evident from his frequent contributions to the Mathematical Gazette, Lyness was a school

teacher and chief inspector of schools for HMI. He was cited as an influence in the early academic life
of Sir John Anthony Pople (1925–2004), the 1998 Nobel Laureate in Chemistry. In an autobiographical
piece in Les Prix Nobel (Frängsmyr, 1998), Pople writes

My grades outside of mathematics and science were undistinguished so I usually ended up
several places down in the monthly class order. This all changed suddenly three years later
when the new senior mathematics teacher, R. C. Lyness, decided to challenge the class with
an unusually difficult test. I succumbed to temptation and turned in a perfect paper, with
multiple solutions to many of the problems.
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Figure 14.14. A biquadratic six cycle.

initial circle S0 touching C3 and C1 which in turn touches S1 in the chain. It follows
there are a set of eight possible circles S3, and if we have a similarly constructed set
S−3, then by proving that if the two sets are we prove the theorem.

Unfortunately, while partly verified by computer, the biquadratic six cycle in ques- 17

tion has not been proven. However, referring to Figure 14.14, we consider the first two
positive terms of the cycle.

Let the centres of C1, C2 and C3 be P1, P2 and P3, respectively, and the common
value of their radii be r . Further, suppose that the centre and radius of the circle P1 P2 P3
are O and R, respectively. If denote by Q1 and Q2 the centres of S1 and S2, then Q1 lies
on the perpendicular bisector of P1 P2, and Q2 on the perpendicular bisector of P3 P1.
Letting 6 O P1 Q1 = θ1 and 6 Q2 P1 O = θ2 so that t1 = tan 1

2θ1 and t2 = tan 1
2θ2, then

we can apply elementary geometry to obtain

T1T2 = (t1 + t2)2,

where Ti = (1 + k)t2
i − 2kti cotαi + (1 − k) and k = r/R.

14.5. Tangent and anti-tangent cycles

Suppose that we now have oriented circles. We refer to these as cycles. In this context,
we consider two cycles to be tangent if they are oriented in the same direction at their
point of tangency, while if they are oriented in opposite directions, then they are anti-
tangent.

In the case of tangent cycles, we have the following result:

THEOREM 14.10. Let H1 and H2 be two cycles tangent at P, and let H3 be a cycle
not tangent to either H1 or H2. Then there exists just one cycle tangent to H1 and H2
(at P) and H3.

This is easily proven by inversion, mapping the point P to the point at infinity. 18

17Lyness (1974).
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Figure 14.15. Nine tangent cycles.

It allows us to state a special case of Theorem 14.1 in terms of tangent cycles (Fig-
ure 14.15).

THEOREM 14.11. Let C1, C2 and C3 be three cycles in general position in the plane
and let S1 be any cycle tangent to C1 and C2. Consider then the following uniquely
defined chain of cycles: S2 is a cycle tangent to C2, C3 and S1; S3 is a cycle tangent to
C3, C1 and S2; S4 is a cycle tangent to C1, C2 and S3; S5 is a cycle tangent to C2 C3
and S4; S6 is a cycle tangent to C3, C1 and S5; S7 is a cycle tangent to C1, C2 and S6.
Then the last cycle S7 coincides with the first cycle S1.

The uniqueness of the choices of cycle at each step clearly follows from Theo-
rem 14.10. The proof of this result is simplified by the following observation:

THEOREM 14.12. The six points of tangency of the circles in Theorem 14.11 are
concyclic. 19

Proof of Theorems 14.11 and 14.12 (Rigby, 1981a). We invert Figure 14.15 so that the 20

points labelled F , G and H become collinear to obtain Figure 14.16. If we let C1, C2
and C3 meet the line FG H again at K , L and M then clearly all of the angles θ are
equal. Hence, we have points of tangency of S3 at H and K ; S4 at K and L; S5 at L
and M ; and S6 at M and F .

The restatement in terms of anti-tangent cycles, as shown in Figure 14.17, is as
follows:

THEOREM 14.13. Let C1, C2 and C3 be three cycles in general position in the plane 21

and let S1 be any cycle anti-tangent to C1 and C2. Consider then the following chain

18Suppose S is a circle with centre O and radius r , and let P be any point except O . If P ′ is the point on
a line O P that lies on the same side of O as P and satisfies the equation O P.O P = r2, then P ′ is known as
the inverse of P with respect to S. The point O is the centre of inversion, while S is the circle of inversion.
The map P 7→ P ′, for all P not equal to O , is known as inversion.

19A set of points which all lie on the same circle are said to be concyclic.
20Rigby (1981a) 361–363.
21Rigby (1981b) 110–132.
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Figure 14.16. Inversion of nine tangent cycles.

of cycles: S2 is a cycle anti-tangent to C2, C3 and S1; S3 is a cycle anti-tangent to C3,
C1 and S2; S4 is a cycle anti-tangent to C1, C2 and S3; S5 is a cycle anti-tangent to C2
C3 and S4; S6 is a cycle anti-tangent to C3, C1 and S5; S7 is a cycle anti-tangent to
C1, C2 and S6. Then the choices for the last cycle S7 coincide with the choices for the
first cycle S1.

In this case we do not have a unique chain, and the points of tangency are not
concyclic, so we have the general case given in Theorem 14.1. It follows that the
proof is considerably more complex than the case of tangent cycles. However, while
not entirely elementary, appealing to small amount of complex analysis, it is the only
complete proof that does not use elliptic functions or elliptic curves.

We can conclude with a related problem involving 45 circles. If we have a chain
of nine circles chosen in the same way as Theorem 14.1, then it is possible, in certain
circumstances, to combine this with nine others to form a chain of 45 circles touching
in threes at 60 points.

C1

C2

C3

S1

S2

S3

S4

S5

S6

Figure 14.17. Nine anti-tangent cycles.
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Poncelet, J.-V. (1865). Traité des propriétés projectives des figures. Gauthier-Villars,
Paris, France.

Prasolov, V. & Solovyev, Y. (1997). Elliptic Functions and Elliptic Integrals. Number
170 in Translations of Mathematical Monograms. American Mathematical Society,
Providence, Rhode Island, United States.

Reid, M. A. (1988). Undergraduate Algebraic Geometry. Number 12 in London Math-
ematical Society Student Texts. Cambridge University Press, Cambridge, United
Kingdom.

Smart, W. M. (1977). Textbook on Spherical Astronomy. Sixth edition. Cambridge
University Press, Cambridge, United Kingdom.

Whittaker, E. T. & Watson, G. N. (1927). A Course of Modern Analysis. Fourth edition.
Cambridge University Press, Cambridge, United Kingdom.

Unpublished

Lyness, R. C. (1973). The Nine Circles Theorem. Letter to J. V. Armitage, University
of Nottingham, Nottingham, United Kingdom.
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Lecture course at Université Pierre et Marie Curie, Paris, France.

Serre, J.-P. (1991). Mathematical Writing. Letter to D. Goss, Ohio State University,
Columbus, Ohio, United States.

110


	I Background
	Elliptic Functions
	Motivation
	Definition of an elliptic function
	Properties of an elliptic function

	Jacobi Elliptic Functions
	Motivation
	Definitions of the Jacobi elliptic functions
	Properties of the Jacobi elliptic functions
	The addition formulæ for the Jacobi elliptic functions
	The constants K and K'
	Periodicity of the Jacobi elliptic functions
	Poles and zeroes of the Jacobi elliptic functions
	The theta functions

	Weierstrass Elliptic Functions
	Motivation
	Definition of the Weierstrass elliptic function
	Periodicity and other properties of the Weierstrass elliptic function
	A differential equation satisfied by the Weierstrass elliptic function
	The addition formula for the Weierstrass elliptic function
	The constants e1, e2 and e3
	Connection with the Jacobi elliptic functions and the theta functions
	The Weierstrass zeta and sigma functions

	Elliptic Integrals
	The elliptic integral of the first kind
	The elliptic integral of the second kind
	The addition formula for the elliptic integral of the second kind
	The integral formula for the Weierstrass elliptic function


	II Applications of the Jacobi Elliptic Functions
	Greenhill's Pendulums
	The simple pendulum
	The period of the pendulum
	The pendulum just reaches its highest position
	The pendulum makes complete revolutions

	Halphen's Circles and Poncelet's Polygons
	A circle and a closed curve
	Eccentricity of the curve
	The Jacobi elliptic functions
	Quarter and half periods
	Derivatives of the Jacobi elliptic functions
	A theorem of Jacobi
	Poncelet's poristic polygons

	Fagnano's Ellipses
	Fagnano's theorem on arcs of an ellipse
	Fagnano's point
	Rolling an ellipse on a curve

	Bernoulli's Lemniscate
	Rectification of the lemniscate
	The lemniscate functions
	Fagnano's doubling of the lemniscate
	Division of the lemniscate
	Euler's addition formula

	Spherical Trigonometry
	Formulæ of spherical trigonometry
	Elliptic measures of the angles of a spherical triangle
	A further derivation of the Jacobi addition formulæ

	Surface Area of an Ellipsoid
	Surface area in terms of elliptic integrals of the second kind

	Seiffert's Spherical Spiral
	Parametric equations of a Seiffert's spiral in cylindrical coordinates
	Properties of a Seiffert's spiral
	Low speed travel
	Periodicity of the Jacobi elliptic functions
	Seiffert's spiral as a closed curve
	Projecting a Seiffert's spiral


	III Applications of the Weierstrass Elliptic Functions
	The Spherical Pendulum
	Equations of motion of the pendulum in cylindrical coordinates
	Equations of motion of the pendulum in Cartesian coordinates

	Elliptic Curves and Cryptography
	Addition on the cubic
	The group law
	The simplified group law
	Abel's method of proving addition formulæ
	Elliptic curve cryptography

	The Nine Circles Theorem
	A triangle and six circles
	Polygons and circles
	The nine circles theorem
	A biquadratic six cycle
	Tangent and anti-tangent cycles


	Bibliography

