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Make me to see ’t; or, at the least, so prove it,
That the probation bear no hinge nor loop
To hang a doubt on; or woe upon thy life!

William Shakespeare, Othello: The Moor of Venice, Act III, Scene iii, 1604
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Chapter 1

Combinatorics and Looplessness

In the labyrinth of a difficult text, we find unmarked forks in the path, detours, blind alleys,
loops that deliver us back to our point of entry, and finally the monster who whispers an
unintelligible truth in our ears.

Mason Cooley, City Aphorisms, Fifth Selection, 1988

Combinatorics is the study of finite sets of objects defined by certain properties. For example,

(i) Subsets of a finite set

∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}.

(ii) Permutations of n objects
123, 132, 213, 231, 312, 321.

(iii) Graphs and digraphs

1
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8

9
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5

6

7

8

9

(iv) Combinations of t from n objects

321, 421, 431, 432, 521, 531, 532, 541, 542, 543.

There are several related questions to consider for any particular set of combinatorial objects,
such as existence and enumeration, but we will focus on generation, that is, generating all
possibilities and visiting each object in turn.

Algorithms for the combinatorial generation of a set of objects vary according to many con-
straints. We are concerned with the efficiency of the algorithm in terms of time, and the order in
which objects are visited. The timing of combinatorial algorithms will be studied in the context
of loopless algorithms, while we will see several different methods of ordering for each problem,
both loopless and non-loopless.
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1.1. Loopless imperative algorithms

An imperative algorithm for generating combinatorial objects is ‘loopless’ if for every set of n 1

elements:

(i) The number of steps needed to generate the first object is less than O(n).

(ii) The decision whether an object is the last is obtained within O(1) steps.

(iii) Every transition between successive objects requires at most O(1) steps.

(iv) The objects are represented in a simple form and can be read directly without requiring
any additional steps.

To remove the loops from combinatorial algorithms we often need to use techniques such as focus
pointers, doubly linked lists and coroutines. The overhead generated from this means that the
total running time of a loopless algorithm on a sequential computer may not be less than that
of a straightforward amortized O(1) algorithm.

1.2. Folds and unfolds

To formulate a functional interpretation of a loopless algorithm, we clearly need to construct a
list from a particular seed value. The obvious way to achieve this is by using the library function
unfoldr:

unfoldr :: (b→ Maybe (a,b))→ b→ [a]
unfoldr step y = case step y of

Just (x, y ′) → x : unfoldr step y ′

Nothing → [ ]

where the standard type Maybe is defined by

data Maybe a = Nothing | Just a

Intuitively, unfoldr is given an initial state y and the step function is applied to it to determine
whether an element of the output list is produced. If the value of step y is Nothing , then we
have reached the end of the list. However, when step y is Just (x, y ′), we cons a new element x
to the start of the list and use y ′ in the generation of the remainder of this list.

The name unfoldr is appropriate since we can consider it to be the opposite, or dual, to the
prelude function foldr:

foldr :: (a→ b→ b)→ b→ [a]→ b
foldr f e [ ] = e
foldr f e (x : xs) = f x (foldr f e xs)

While foldr constructs lists, unfoldr consumes them. In fact, we have the following result:

THEOREM 1.1. If step (f x y) = Just (x, y) and step z = Nothing , then 2

unfoldr step · foldr f z = id

1Ehrlich (1973b) 500–501.
2Peyton Jones (2003) 183–184.
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1.3. Loopless functional algorithms

Our version of a loopless functional algorithm is expressed in the form 3

unfoldr step · prolog

where step and prolog take O(1) and O(n) time, respectively, in the size of the input.

As a result of laziness, the work of prolog is distributed throughout the computation of
unfoldr step. Ideally, for true looplessness, we would like prolog to be evaluated entirely before
any evaluation of unfoldr step, but unfortunately we are not able to define a completely strict
composition operator. Despite this, we do still catch the essential idea of a loopless algorithm.

It is important to note that since it may not be possible to generate a particular combinatorial
object in O(1) time, we are concerned with generating the transitions between objects instead of
the objects themselves. These, for example, may be expressed as a list of integers representing the
position in a binary n-tuple of a bit to be complemented, or a characterization of an interchange
of two elements in a string. Identifying a suitable description for transitions may seem an added
inconvenience, but in reality this is not a problem for most combinatorial algorithms.

However, we begin with a loopless version of the prelude function concat defined by

concat :: [[a]]→ [a]
concat = foldr (++) [ ]

This can be defined in terms of unfoldr: 4

concat′ = unfoldr step · filter (¬ · null)
where step [ ] = Nothing

step ((x : xs) : xss) = Just (x, consList xs xss)

The function consList is defined by

consList xs xss = if null xs then xss
else xs : xss

Empty lists are filtered from the input to ensure that step takes O(1) time. This is because if we
had a run of m empty lists between two non-empty lists, then after producing the last element of
the first list, it would take m steps to the produce the first element of the last list. Our definition
of consList ensures that we continue to cons only non-empty lists onto a list of lists.

3Bird (2005b). We will use the syntax and libraries of the lazy functional language Haskell 98 throughout.
4We could also define concat′ by

concat′ = unfoldr step · concat
where step [ ] = Nothing

step (x : xs) = Just (x, xs)

but this would not be particularly constructive since unfoldr step is the identity function on lists, with the real
computation being carried out by the prelude function concat. Moreover, this idea would not work for functions
whose output is exponentially longer than the input.
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Chapter 2

Tree Traversals

What went forth to the ends of the world to traverse not itself, God, the sun, Shakespeare,
a commercial traveller, having itself traversed in reality itself becomes that self.

James Joyce, ‘Circe’, Ulysses, 1922

Frequently, to achieve the constraints on running time imposed by looplessness, we will need
to use intermediate types, and, in particular, trees. For example, suppose we would like to
manipulate the elements of a list. We may define an abstraction function abst in the prolog of
a loopless algorithm with type signature

abst :: [a]→ Tree a

which builds a tree from the list. We can eventually recover this list in steps defined by a tree
traversal traverse with type signature

traverse :: Tree a→ [a]

Common traversals are preorder, postorder and inorder. It will help us to make two of these
traversals loopless.

2.1. Preorder traversal of rose trees

Preorder traversal of binary trees is defined recursively:

(i) Visit the root.

(ii) Traverse the left subtree.

(iii) Traverse the right subtree.

For forests of rose trees, we visit the root of the first tree, traverse each subtree of this tree in
preorder and then traverse the other trees in the forest in turn. The preorder traversal of the
forest in Figure 2.1 is therefore

1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

In postorder traversals of a binary trees, the root is visited after each of its subtrees:

(i) Traverse the left subtree.

(ii) Traverse the right subtree.

5
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Figure 2.1. A forest of rose trees.

(iii) Visit the root.

This translates to forests of rose trees in an analogous way to preorder. Figure 2.1 reduces in
this order to

2, 4, 3, 1, 6, 8, 7, 10, 9, 5.

We now consider a functional implementation of the preorder traversal of a rose tree. These 1

have the type
data Rose a = Node a [Rose a]

The obvious way to define the traversal preorder is recursively using the prelude functions concat
and map:

preorder :: Rose a→ [a]
preorder (Node x xts) = x : concat (map preorder xts)

Unfortunately, this is not efficient, but we can introduce an intermediate function ptf such that

ptf = concat ·map preorder

We can define ptf directly by

ptf :: [Rose a]→ [a]
ptf [ ] = [ ]
ptf (Node x xts : yts) = x : ptf (xts ++ yts)

It follows that ptf computes the preorder traversal of a forest of rose trees. Therefore,

preorder = ptf · wrap
where wrap xt = [xt]

This version of preorder takes O(n) time in the size of the rose tree. Moreover, we can cast ptf
into the loopless form

ptf = unfoldr step

where
step [ ] = Nothing
step (Node x xts : yts) = Just (x, xts ++ yts)

We need the function step to take O(1) time, so we wrap each rose tree in a further list and
process elements of the list of lists instead:

step [ ] = Nothing
step ((Node x xts : yts) : tss) = Just (x, consList xts (consList yts tss))

1Bird (2005b). See also Gibbons & Jones (1998).
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Figure 2.2. A binary tree.

Then our loopless functional algorithm for preorder is simply

preorder = unfoldr step · doubleWrap
where doubleWrap xt = [[xt]]

2.2. Inorder traversal of binary trees

A more symmetric way to traverse binary trees is inorder. This is defined as follows:

(i) Traverse the left subtree.

(ii) Visit the root.

(iii) Traverse the right subtree.

There is no simple interpretation of inorder traversal for rose trees since there is no obvious place
to insert the root amongst its descendants. Figure 2.2 is traversed inorder as

1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

We represent binary trees functionally by

data Tree a = Null | Fork a (Tree a) (Tree a)

Then inorder may be defined recursively using concatenation: 2

inorder Null = [ ]
inorder (Fork x lt rt) = inorder lt ++ x : inorder rt

Now, suppose we convert the binary tree into a list of spines of the right subtrees along the path
of the leftmost node to the root using a forest of rose trees. This requires a function mkSpines
defined by

mkSpines :: Tree a→ [Rose a]
mkSpines t = addSpines t [ ]

where

addSpines Null sps = sps
addSpines (Fork x lt rt) sps = addSpines lt (Node x (mkSpines rt) : sps)

2Bird (2005b).

7



It follows that the spines of the binary tree in Figure 2.2 are described by the forest in Figure 2.1.
We can also see that the preorder traversal of this forest is identical to the inorder traversal of
the binary tree. Since this is the case for all binary trees, inorder traversal may be defined using
mkSpines and the preorder traversal ptf from Section 2.1:

inorder = unfoldr step · wrapList ·mkSpines
where wrapList xs = consList xs [ ]

This is a loopless functional algorithm for inorder.
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Chapter 3

Fundamental Laws

The following are the universally fundamental laws of literary communication:

1. one must have something to communicate;

2. one must have someone to whom to communicate it;

3. one must really communicate it, not merely express it for oneself alone.

Otherwise it would be more to the point to remain silent.

Friedrich Von Schlegel, ‘Aphorism 98’, Selected Aphorisms from the Lyceum, 1797

We will often be able to formulate functional algorithms for combinatorial generation in terms of
the function foldr. To make progress in transforming these into loopless functional algorithms,
we will make use of two fundamental laws of functional programming.

3.1. The fusion law

The fusion law tells as that, assuming certain conditions hold, a strict function applied to a value 1

assembled from a list can be produced directly from the elements of that list.

THEOREM 3.1. If the function f is strict, and it satisfies f a = b and f (g x y) = h x (f y) for
all x and y , then

f · foldr g a = foldr h b

The condition relating f with the functions g and h ensures that it may be computed incremen-
tally. The proof of this theorem is a simple induction using the definition of foldr.

We illustrate fusion by considering the prelude function map defined by

map :: (a→ b)→ a→ b
map g [ ] = [ ]
map g (x : xs) = g x (map g xs)

Suppose we wish to fuse foldr and map such that

foldr f a ·map g = foldr h b

Since foldr f a is strict, we can apply the fusion law by expressing map in terms of foldr:

map g = foldr ((:) · g) [ ]

From this it is easy to derive a corollary of the fusion law known as fold-map fusion:

1Bird (1998) 131–132.
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THEOREM 3.2.
foldr f e ·map g = foldr (f · g) e

Therefore, a map followed by a fold can always be expressed as a single fold.

3.2. The banana-split law

The banana-split law when defined in terms of foldr is stated as follows: 2

THEOREM 3.3.
fork (foldr f a, foldr g b) = foldr h (a,b)

where
fork (f , g) x = (f x, g x)
h x (y , z) = (f x y , g x z)

As an example of the application of this law, consider the function average which calculates
the average value of a list of integers:

average = div · fork (sum, length)

where
div (0, 0) = 0
div (x, y) = x / y

sum = foldr (+) 0

length = foldr succ 0
where succ x n = n + 1

We set div (0, 0) = 0 to avoid problems when dealing with empty lists. Clearly, this definition
of average requires the input list to be traversed twice. However, by applying the banana-split
law, we can achieve a modest increase in efficiency by reducing this to a single traversal:

average′ = div · foldr pluss (0, 0)
where pluss x (y ,n) = (x + y ,n + 1)

2Bird & de Moor (1997) 55–58. The banana-split law is so named because, in its general form, it applies
to pairs of catamorphisms. These are normally represented by banana-shaped brackets ([ ]), while the pairing
operator is sometimes referred to as ‘split’.
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Chapter 4

Queues

An Englishman, even if he is alone, forms an orderly queue of one.

George Mikes, How To Be An Alien, 1946

When working under the constraints of an O(n) time prolog and O(1) time step, we need an
efficient way to add and remove elements to and from the beginning and end of lists. In the case
of queue-like structures, a function remove defined by

remove :: [a]→ (a, [a])
remove (x : xs) = (x, xs)

clearly takes O(1) time. However, the following function insert takes O(n) time in the length of
its input list:

insert :: [a]→ a→ [a]
insert xs x = xs ++ [x]

We could reverse the list, but then, while insert would be improved to O(1) time, remove would
fall back to O(n) time. Fortunately, there are several ways to improve this situation and achieve
both O(1) time insertions and deletions.

4.1. Amortized queues using paired lists

Our first method uses a pair of lists to represent a queue: 1

type Queue a = ([a], [a])

Denoting these lists as (xs, ys), the front part of the queue is held in xs, while the rear part is
reversed and stored in ys. Therefore, the first element of the queue is at the head of xs and the
last element is at the head of ys. It follows that as long as neither xs nor ys are empty, we can
access the elements we require in O(1) time. Hence, insert is defined by

insert (xs, ys) x = (xs, x : ys)

Now, a complication occurs when the front of the queue is empty. Then the last element of the
queue is the last of ys, so we must reverse ys and use this as the front of the queue, while setting
the rear to be empty. This operation can be carried out when an element is removed. Therefore,
we have

remove ([ ], ys) = remove (reverse ys, [ ])
remove (x : xs, ys) = (x, (xs, ys))

1Okasaki (1995) 584–585 and Okasaki (1998) 42–44, based upon Hood & Melville (1981).
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type Queue a = ([a], [a])

empty = ([ ], [ ])

isEmpty (xs, ys) = null xs

insert (xs, ys) x = (xs, x : ys)

remove ([ ], ys) = remove (reverse ys, [ ])
remove (x : xs, ys) = (x, (xs, ys))

Figure 4.1. Amortized queues using paired lists.

This takes O(n) time in the length of the list because of the O(n) time list reversal. However, as
this only occurs when there have been n insertions since the last removal, we can amortize the
cost over these insertions, giving us O(1) amortized time operations.

Figure 4.1 shows the full implementation including a representation of an empty queue and
a test for emptiness.

4.2. Amortized queues using laziness and incremental computation

We can improve from O(n) to O(log n) worst case time by making use of laziness and performing 2

the list reversal incrementally instead of all at once. Therefore, we must ensure that we begin
the list reversal early enough so that a first element is always available when required.

To prevent the occurrence of a long delay for some removals, we introduce a rotation rot
which periodically replaces (xs, ys) with (xs ++ ys, [ ]). Because the concatenation operation is
already incremental, we can make rotation incremental by carrying out one step of the reversal
in every step of the concatenation. To define rot we use an accumulating parameter zs:

rot [ ] (y : ys) zs = y : zs
rot (x : xs) (y : ys) zs = x : rot xs ys (y : zs)

We maintain an invariant
length ys ≤ length xs

and perform rotations only when this would be violated. This is encapsulated in the function
chkQueue shown with the rest of the implementation in Figure 4.2.

4.3. Real-time queues using pre-evaluation

For our purposes, it is not sufficient to bound operations by O(1) amortized time. We need to 3

guarantee O(1) time, even in the worst case. To achieve this, we must pre-evaluate the front
of the queue to ensure that no tail of the list xs takes more than O(1) time to compute. We
introduce a third list zs, which will act as a pointer into xs, resulting in the new type

type Queue a = ([a], [a], [a])

2Okasaki (1995) 586–587.
3Okasaki (1995) 587–588.
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type Queue a = ([a], [a])

empty = ([ ], [ ])

isEmpty (xs, ys) = null xs

insert (xs, ys) x = chkQueue (xs, x : ys)

remove (x : xs, ys) = (x, chkQueue (xs, ys))

chkQueue (xs, ys) = if length ys ≤ length xs then (xs, ys)
else (rot xs ys [ ], [ ])

rot [ ] (y : ys) zs = y : zs
rot (x : xs) (y : ys) zs = x : rot xs ys (y : zs)

Figure 4.2. Amortized queues using laziness and incremental computation.

When zs is the empty list, the entire list has been pre-evaluated. On each call to insert or remove
that does not cause a rotation to take place, the function chkQueue advances zs by one position,
pre-evaluating the next tail:

chkQueue (xs, ys, [ ]) = (zs, [ ], zs)
where zs = rot xs ys [ ]

chkQueue (xs, ys, z : zs) = (xs, ys, zs)

Following a rotation, zs is set to xs. By maintaining the invariant

length zs = length xs − length ys

we can ensure that zs is empty by the next rotation. Therefore, we have the guaranteed O(1)
time implementation shown in Figure 4.3 on the page that follows.

13



type Queue a = ([a], [a], [a])

empty = ([ ], [ ], [ ])

isEmpty (xs, ys, zs) = null xs

insert (xs, ys, zs) x = chkQueue (xs, x : ys, zs)

remove (x : xs, ys, zs) = (x, chkQueue (xs, ys, zs))

chkQueue (xs, ys, [ ]) = (zs, [ ], zs)
where zs = rot xs ys [ ]

chkQueue (xs, ys, z : zs) = (xs, ys, zs)

rot [ ] [y ] zs = y : zs
rot (x : xs) (y : ys) zs = x : rot xs ys (y : zs)

Figure 4.3. Real-time queues using pre-evaluation.
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Part II

Mixing
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Chapter 5

Mixing with Rose Trees

What a lovely thing a rose is! ... Our highest assurance of the goodness of Providence seems
to me to rest in the flowers. All other things, our powers, our desires, our food, are all really
necessary for our existence in the first instance. But the rose is an extra. Its smell and its
colour are an embellishment of life, not a condition of it. It is only goodness which gives
extras.

Sir Arthur Conan Doyle, ‘The Naval Treaty’, The Memoirs of Sherlock Holmes, 1893

Many of the combinatorial functional algorithms that we will formulate are linked by a construc-
tion that we will refer to as ‘mixing’. We define this using simple functions mix and mixall that
act on finite lists. If we can derive a loopless functional algorithm for mixall, then we may be
able to use this to ensure our combinatorial functional algorithms are also loopless. There are
several ways to make mixall loopless, the first of these uses rose trees as an intermediate type.

5.1. Mix and mixall

Our definition of the mixing function mix is as follows: 1

mix :: [a]→ [a]→ [a]
mix [ ] ys = ys
mix (x : xs) ys = ys ++ x : mix xs (reverse ys)

This interleaves each element of the first list with, alternatively, the entire second list or the
reverse of that list. Therefore,

mix [3, 4, 5, 6] [0, 1, 2] = [0, 1, 2, 3, 2, 1, 0, 4, 0, 1, 2, 5, 2, 1, 0, 6, 0, 1, 2]

The function mix is associative with the empty list as its identity element. This is easily proved
by induction using the intermediate results

mix (xs ++ y : ys) zs = if even (length xs) then mix xs zs ++ y : mix ys (reverse zs)
else mix xs zs ++ y : mix ys zs

reverse (mix xs ys) = if even (length xs) then mix (reverse xs) (reverse ys)
else mix (reverse xs) ys

We define a function mixall for mixing the lists in a list of lists by 2

1Bird (2005b).
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mixall :: [[a]]→ [a]
mixall = foldr mix [ ]

For example, by mixing the list of lists [[6, 7], [3, 4, 5], [1, 2]], we obtain the result

[1, 2, 3, 2, 1, 4, 1, 2, 5, 2, 1, 6, 1, 2, 5, 2, 1, 4, 1, 2, 3, 2, 1, 7, 1, 2, 3, 2, 1, 4, 1, 2, 5, 2, 1]

When applied to a list of n lists of m elements, the length of mixall is exponential in mn, the
total length of the input.

5.2. Fusion and banana-splitting

We begin by casting mixall into ‘loopless form’. This will be a function unfoldr step · prolog
where step and prolog do not necessarily meet the conditions for looplessness. Our first step is
to use the fusion law to express reverse ·mixall in terms of foldr. Clearly, the prelude function
reverse is strict and reversal does not change an empty list. Therefore, we need only find a
function xim such that

reverse (mix xs ys) = xim xs (reverse ys)

The definition of xim we will use in this section is recursive, obtained by reversing the terms on 3

either side of the concatenation in our definition of mix:

xim [ ] ys = ys
xim (x : xs) ys = xim xs (reverse ys) ++ x : ys

Abbreviating reverse ·mixall to ximall, we have

ximall = foldr xim [ ]

By the banana-split law, we can combine the evaluation of mixall and ximall into one computa-
tion:

fork (mixall, ximall) = foldr pmix ([ ], [ ])
where pmix xs (ys, sy) = (mix xs ys, xim xs sy)

If we assume that (ys, sy) satisfies sy = reverse ys, then by an inductive argument using the
definitions of mix and xim, we can express pmix recursively, independent of mixall and ximall,
by

pmix [ ] (ys, sy) = (ys, sy)
pmix (x : xs) (ys, sy) = (ys ++ x : us, vs ++ x : sy)

where (us, vs) = pmix xs (sy , ys)

Using an associative operator �, we also have

pmix (x : xs) (ys, sy) = (ys, sy)� ([x], [x])� pmix xs (sy , ys)
where (xs, sx)� (ys, sy) = (xs ++ ys, sy ++ xs)

From this definition, together with the trivial identity fst · fork (f , g) = f it follows that

mixall = fst · foldr pmix ([ ], [ ])

2As mix is associative we could also have defined mixall in terms of foldl without affecting the result.
3We will meet a non-recursive definition of xim in Section 6.1.
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5.3. Casting mixall into loopless form using fission and rose trees

To obtain our loopless form, we need to split foldr into two separate folds. This could be described
as using the fusion law in the opposite direction to before. Hence, we call this step ‘fission’.

We represent the elements of the type [a] by the elements of some intermediate type T a
under an abstraction function abst with type signature

abst :: T a→ [a]

This is linked to pmix using a function tmix with type signature

tmix :: [a]→ (T a,T a)→ (T a,T a)

which satisfies the condition

pair abst · tmix xs = pmix xs · pair abst

where
pair f (x, y) = (f x, f y)

To apply fission, T a must contain a constructor Null which will correspond to the empty list.
It follows that

foldr pmix ([ ], [ ]) = pair abst · foldr tmix (Null,Null)

As fst · pair f = f · fst, we have

mixall = abst · fst · foldr tmix (Null,Null)

If we are to obtain a loopless algorithm for mixall, then we need to choose T a and abst, and
derive tmix such that it does less work than pmix while abst does more than none at all.

In Section 2.1, we derived a loopless functional algorithm for the preorder traversal of a rose
tree. It would seem reasonable to choose T a as a rose tree and abst as this tree traversal.
However, there is no Null constructor for empty trees. A simple solution is to take T a as
Maybe (Rose a), with Nothing representing the empty list. It follows that

preorder = unfoldr step · wrapList · wrapTree

where wrapTree is defined by

wrapTree Nothing = [ ]
wrapTree (Just xt) = [xt]

and the definition of step is unchanged:

step [ ] = Nothing
step ((Node x xts : yts) : tss) = Just (x, consList xts (consList yts tss))

Now, we need a suitable definition of tmix. We can take this to be the same as pmix except that
we replace � with ⊗:

tmix [ ] (myt,mty) = (myt,mty)
tmix (x : xs) (myt,mty) = (myt,mty)⊗ (mxt,mxt)⊗ tmix xs (mty ,myt)

where mxt = Just (Node x [ ])
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It follows that the condition imposed on tmix holds provided

pair preorder ((mxt,mtx)⊗ (myt,mty))
= pair preorder (mxt,mtx)� pair preorder (myt,mty)

Although not associative, we can choose to define ⊗ by

(mxt,mtx)⊗ (myt,mty) = (mxt �myt,mty �mtx)

where
Nothing �myt = myt
mxt �Nothing = mxt
Just (Node x xts)� Just yt = Just (Node x (xts ++ [yt]))

By application of the fusion law, we have 4

mixall = preorder · fst · foldr tmix (Nothing ,Nothing)

Therefore, our loopless form for mixall is

mixall = unfoldr step · prolog

where
prolog = wrapList · wrapTree · fst · foldr tmix (Nothing ,Nothing)

A graphical illustration of prolog applied to the list of lists [[6, 7], [3, 4, 5], [1, 2]] is shown in
Figure 5.1. Clearly, the preorder traversal of this rose tree is equal to the result of evaluating
mixall with the same input. If we substituted snd for fst in prolog , we would have a loopless
form for reverse ·mixall instead.

5.4. Replacing lists with real-time queues

We have mixall in loopless form, but we need to ensure that step takes O(1) time and prolog
takes O(n) time in the total length of the input list. While our definition of step already satisfies
its part of this joint constraint, the running time of prolog is O(n) only if tmix xs is O(n) in the
length of the list xs. Moreover, this is only the case if ⊗ takes O(1) time. However, the operator
⊗ is defined in terms of � and

Just (Node x xts)� Just yt = Just (Node x (xts ++ [yt]))

so it follows that mxt �myt takes time proportional to the number of children of mxt.

4If we instead chose to use binary trees and inorder traversal, then tmix would be defined by

tmix [ ] (yt, ty) = (yt, ty)
tmix (x : xs) (yt, ty) = (Fork yt x zt, Fork tz x ty)

where (zt, tz) = tmix xs (ty, yt)

and mixall would become
mixall = inorder · fst · foldr tmix (Null, Null)

Since we have to convert binary trees to rose trees to carry out the loopless inorder traversal, prolog would then
be defined by

prolog = unfoldr step · wrapList ·mkSpines · fst · foldr tmix (Null, Null)
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Figure 5.1. A rose tree built by prolog.

Recalling Chapter 4, we can see that the list of children of a rose tree in this version of mixall
is effectively a queue. The function � inserts a tree at the end of a list, while step removes lists
of lists from the front. Therefore, we can apply real-time queues to reduce the running time of
prolog to O(n).

To achieve the conversion from lists to queues, we first replace the list of children in the
definition of rose trees with queues:

data Rose a = Node a (Queue (Rose a))

Then we can define, for example, functions wrapQueue and consQueue analogous to wrapList
and consList for lists:

wrapQueue xtq = consQueue xtq [ ]

consQueue xtq xtqs = if isEmpty xtq then xtqs
else xtq : xtqs

It follows that prolog becomes

prolog = wrapQueue · wrapTree · fst · foldr tmix (Nothing ,Nothing)

while step simplifies to

step [ ] = Nothing
step (xtq : xtqs) = Just (x, consQueue ytq (consQueue ztq xtqs))

where (Node x ytq, ztq) = remove xtq

The full translation of our loopless form using lists to a loopless functional algorithm using
real-time queues appears in Figure 5.2 overleaf.
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data Rose a = Node a (Queue (Rose a))

mixall = unfoldr step · prolog

prolog = wrapQueue · wrapTree · fst · foldr tmix (Nothing ,Nothing)

tmix [ ] (myt,mty) = (myt,mty)
tmix (x : xs) (myt,mty) = (myt,mty)⊗ (mxt,mxt)⊗ tmix xs (mty ,myt)

where mxt = Just (Node x empty)

(mxt,mtx)⊗ (myt,mty) = (mxt �myt,mty �mtx)

Nothing �myt = myt
mxt �Nothing = mxt
Just (Node x xtq)� Just yt

= Just (Node x (insert xtq yt))

wrapTree Nothing = empty
wrapTree (Just xt) = insert empty xt

wrapQueue xtq = consQueue xtq [ ]

consQueue xtq xtqs = if isEmpty xtq then xtqs
else xtq : xtqs

step [ ] = Nothing
step (xtq : xtqs) = Just (x, consQueue ytq (consQueue ztq xtqs))

where (Node x ytq, ztq) = remove xtq

Figure 5.2. A loopless functional algorithm for mixall using rose trees.
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Chapter 6

Mixing with Forests

‘Mankind is getting smarter every day’. Actually, it only seems so. ‘At least we are making
progress’. We’re progressing, to be sure, ever more deeply into the forest.

Franz Grillparzer, ‘Natural Sciences’, Poems, 1853

While a loopless functional algorithm using rose trees is sufficient for most applications we will
study, it will be constructive to derive a different version along similar lines, but using forests of
rose trees as an intermediate instead.

6.1. Another definition of xim

In Section 5.2, we recursively defined the function xim satisfying

reverse (mix xs ys) = xim xs (reverse ys)

Clearly, we can also express xim directly in terms of mix:

xim xs ys = if even (length xs) then mix (reverse xs) (reverse ys)
else mix (reverse xs) ys

The function ximall is again defined by

ximall = foldr xim [ ]

Now, consider the following alternative definition of mix using the prelude function zipWith with
an infinite list of infinite lists:

mix xs ys = gmix (ys, reverse ys)

where
gmix xs (ys, sy) = ys ++ concat (zipWith (:) xs sys)

where sys = sy : ys : sys

We can then use the banana-split law to obtain

fork (mixall, ximall) = foldr pmix ([ ], [ ])

with pmix defined by

pmix xs (ys, sy) = if even (length xs) then (gmix xs (ys, sy), gmix sx (sy , ys))
else (gmix xs (ys, sy), gmix sx (ys, sy))
where sx = reverse xs
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6.2. Casting mixall into loopless form using fission and forests

Continuing in a similar way to our derivation in Chapter 5, we introduce an intermediate type
and suitable abstraction function. In this case, we will use a forest of rose trees, built by preorder
traversal, to represent a list of lists. It follows that we require a new function tmix satisfying

pair ptf · tmix xs = pmix xs · pair ptf

We have
foldr pmix ([ ], [ ]) = pair ptf · foldr tmix ([ ], [ ])

Therefore,
mixall = ptf · fst · foldr tmix ([ ], [ ])

Now, suppose we have a function fmix that satisfies

ptf (fmix xs (yts, sty)) = gmix xs (ptf yts,ptf sty)

Then we may define tmix by

tmix xs (yts, sty) = if even (length xs) then (fmix xs (yts, sty), fmix sx (sty , yts))
else (fmix xs (yts, sty), fmix sx (yts, sty))
where sx = reverse xs

Fortunately, an appropriate fmix is given by the simple definition

fmix xs (yts, sty) = yts ++ (zipWith Node xs sys)
where sys = sty : yts : sys

This results in another loopless form for mixall:

mixall = unfoldr · step · prolog

where
prolog = wrapList · fst · foldr tmix ([ ], [ ])

Figure 6.1 shows the three forests of rose trees generated by prolog [[6, 7], [3, 4, 5], [1, 2]]. Again
we obtain a loopless form for reverse ·mixall by exchanging fst with snd.

6.3. Introducing real-time queues

We know that step takes O(1) time. Unfortunately, our new definition of prolog is not quite
sufficient for our needs. Therefore, we introduce real-time queues to achieve O(n) time in the total
length of the input list. As before, we redefine rose trees, but we also replace list concatenations
by a function append with type signature

append :: [a]→ Queue a→ Queue a

This is defined by
append = foldl insert

It follows that fmix for queues is given by

fmix xs (ytq, qty) = append ytq (zipWith Node xs qyqs)
where qyqs = qty : ytq : qyqs
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Figure 6.1. Forests of rose trees built by prolog.

Then prolog is simply modified to

prolog = wrapQueue · fst · foldr tmix (empty , empty)

The full listing of our second loopless functional algorithm for mixall appears in Figure 6.2 at
the end of this chapter.

6.4. Mixing lists generated by a loopless functional algorithm

Using this loopless algorithm, we can consider whether it is possible to also derive a loopless
algorithm if the input lists to mixall are generated by another loopless algorithm instead of
being given explicitly. More precisely, we would like to express

mixall ·map (unfoldr step′ · prolog ′)

as a loopless functional algorithm provided that we have additional functions step′′ and prolog ′′

such that
unfoldr step′′ · prolog ′′ = reverse · unfoldr step′ · prolog ′

and a function length′ that satisfies

length′ = length · unfoldr step′ · prolog ′

It will be sufficient for our purposes to partially limit this generalization by adding the further
conditions

prolog ′ = fst · pg prolog ′′ = snd · pg step′ = sp = step′′

for suitable functions sp and pg . Then we have

reverse · unfoldr sp · fst · pg = unfoldr sp · snd · pg

To derive our generalized loopless functional algorithm, we begin with our latest loopless
version of mixall. It follows that

prolog = wrapQueue · fst · foldr tmix (empty , empty) ·map (unfoldr sp · pg)
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Clearly, we need to modify our definition of tmix to eliminate map (unfoldr sp·pg). Therefore, we
need to replace each finite list xs in its definition with a list generated by the loopless algorithm.
We can achieve this by defining a function that calculates values a, b and n that represent,
respectively, the application of fst · pg , snd · pg and length′ to xs and then applying unfoldr sp
to its output within tmix and fmix. It follows that our revised definition of prolog is

prolog sp lg pg = wrapQueue · fst · foldr (tmix sp) (empty , empty) · list lg pg

where

list lg pg xs = [(lg x, a,b) | x ← xs, (a,b)← [pg x]]

tmix sp (n, a,b) (ytq, qty) = if even n
then (fmix sp a (ytq, qty), fmix sp b (qty , ytq))
else (fmix sp a (ytq, qty), fmix sp b (ytq, qty))

fmix sp a (ytq, qty) = append ytq (zipWith Node (unfoldr sp a) qyqs
where qyqs = qty : ytq : qyqs

Unfortunately, this change means that fmix now takes exponential time in the worst case. There-
fore, we need to delay the evaluation of unfoldr sp a and then compute it within step. We
represent delayed evaluation by the type

data Delay a b = Hold a b (Queue (Delay a b),Queue (Delay a b))

Then we redefine fmix to obtain

fmix sp a (ytq, qty) = case sp a of
Nothing → ytq
Just (x,b) → insert ytq (Hold x b (ytq, qty))

We also need a new definition of step as follows:

step sp [ ] = Nothing
step sp (xtq : xtqs) = Just (x, consQueue (fmix sp a (qty , ytq)) (consQueue ztq xtqs))

where (Hold x a (ytq, qty), ztq) = remove xtq

These new functions take O(1) time because sp does by the assumption that it is part of a
loopless functional algorithm. Hence,

mixall ·map (unfoldr sp · fst · pg) = unfoldr (step sp) · prolog sp lg pg
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data Rose a = Node a (Queue (Rose a))

mixall = unfoldr step · prolog

prolog = wrapQueue · fst · foldr tmix (empty , empty)

tmix xs (ytq, qty) = if even (length xs)
then (fmix xs (ytq, qty), fmix sx (qty , ytq))
else (fmix xs (ytq, qty), fmix sx (ytq, qty))
where sx = reverse xs

fmix xs (ytq, qty) = append ytq (zipWith Node xs qyqs)
where qyqs = qty : ytq : qyqs

append = foldl insert

wrapQueue xtq = consQueue xtq [ ]

consQueue xtq xtqs = if isEmpty xtq then xtqs
else xtq : xtqs

step [ ] = Nothing
step (xtq : xtqs) = Just (x, consQueue ytq (consQueue ztq xtqs))

where (Node x ytq, ztq) = remove xtq

Figure 6.2. A loopless functional algorithm for mixall using forests.
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Chapter 7

Mixing with Lists

I made a list of things I have to remember and a list of things I want to forget, but I see
they are the same list.

Linda Pastan, ‘Lists’, 1982

It turns out that we can replace the forests in the loopless functional algorithm calculated in
Chapter 6 with lists and eliminate the need for real-time queues.

7.1. Building forests from two lists

Consider the following function mkRows which builds a pair of lists (tr,br) from a list of lists:

mkRows :: [[a]]→ ([(a, (Int, Int))], [(a, (Int, Int))])
mkRows = pair reverse · snd · foldr op ((0, 0), ([ ], [ ]))

where op is defined using the prelude function zip applied to an infinite list:

op xs ((p, q), (tr,br)) = if even n then ((p, q + n), (reverse cs ++ tr, cs ++ br))
else ((p + q,n), (reverse cs ++ tr, cs ++ br))
where n = length xs

cs = zip xs pqs
pqs = (p, q) : (p + q, 0) : pqs

It follows that
mkRows [[6, 7], [3, 4, 5], [1, 2]] = (tr,br)

where

tr = [(1, (0, 0)), (2, (0, 0)), (3, (0, 2)), (4, (2, 0)), (5, (0, 2)), (6, (2, 3)), (7, (5, 0))]
br = [(2, (0, 0)), (1, (0, 0)), (5, (0, 2)), (4, (2, 0)), (3, (0, 2)), (7, (5, 0)), (6, (2, 3))]

We now wish use these rows to construct the forests of rose trees pictured in Figure 6.1. Then
we will be able to use the function step defined in Section 2.1 to traverse these forests in preorder
and obtain a loopless form for mixall.

To achieve the conversion from rows to forests, we first define a function mkTree with type
signature

mkRose :: ([(a, (Int, Int))], [(a, (Int, Int))])→ (a, (Int, Int))→ Rose a

which constructs a rose tree with the element x at its root:

mkRose rs (x, (p, q)) = Node x (take p (map (mkRose rs) (fst rs))
++ take q (drop p (map (mkRose rs) (snd rs))))
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The integers p and q can now be seen to represent adding children whose roots are the elements
at positions 0 to p− 1 in tr and p to p + q − 1 in br. It follows that we can use this to define a
function mkForests which builds forests:

mkForests rs = wrapList (map (mkRose rs)) (fst rs))

Hence, we have the loopless form

mixall = unfoldr step · prolog

where
prolog = mkForests ·mkRows

If replace fst with snd in the definition of mkForests, then we have a loopless form for reverse ·
mixall instead.

7.2. Removing the conversion to forests

To avoid using rose trees, we begin by replacing mkForest with a function extract defined by

extract ((p, q), rs) = (sr,wrapRow ((p + q, 0), sr))
where sr = pair reverse rs

where
consRow ((p, q), rs) r = if p -- 0 ∧ q -- 0 then r

else ((p, q), rs) : r

wrapRow r = consRow r [ ]

If we modify our definition of mkRows to

mkRows′ = foldr op ((0, 0), ([ ], [ ]))

then we have
prolog = extract ·mkRows′

It follows that step becomes

step (rs, [ ]) = Nothing
step (rs, ((p, q), (t : tr,b : br)) : r) = if p -- 0

then next rs (b, consRow ((p, q − 1), (tr,br)) r)
else next rs (t, consRow ((p − 1, q), (tr,br)) r)

where
next rs ((x, (p, q)), r) = Just (x, (rs, consRow ((p, q), rs) r))

The full definition of this loopless algorithm for mixall is given in Figure 7.1 on the next page.
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data Rose a = Node a [Rose a]

mixall = unfoldr step · prolog

prolog = extract ·mkRows′

mkRows′ = foldr op ((0, 0), ([ ], [ ]))

op xs ((p, q), (tr,br)) = if even n
then ((p, q + n), (reverse cs ++ tr, cs ++ br))
else ((p + q,n), (reverse cs ++ tr, cs ++ br))
where n = length xs

cs = zip xs pqs
pqs = (p, q) : (p + q, 0) : pqs

extract ((p, q), rs) = (sr,wrapRow ((p + q, 0), sr))
where sr = pair reverse rs

pair f (x, y) = (f x, f y)

wrapRow r = consRow r [ ]

consRow ((p, q), rs) r = if p -- 0 ∧ q -- 0 then r
else ((p, q), rs) : r

next rs ((x, (p, q)), r) = Just (x, (rs, consRow ((p, q), rs) r))

step (rs, [ ]) = Nothing
step (rs, ((p, q), (t : tr,b : br)) : r) = if p -- 0

then next rs (b, consRow ((p, q − 1), (tr,br)) r)
else next rs (t, consRow ((p − 1, q), (tr,br)) r)

Figure 7.1. A loopless functional algorithm for mixall using lists.
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Chapter 8

Mixing with Binary Trees

A tree’s a tree. How many more do you need to look at?

Ronald Reagan, Speech opposing the expansion of Redwood National Park, 1965

So far our loopless functional algorithms for mixall have been derived using rose trees, in some
form, and real-time queues. However, it is possible to formulate an algorithm using binary trees
instead, and we are able to retain a list structure to avoid making essential use of laziness.

8.1. Mixorder traversal of binary trees

Consider the definition of binary trees:

data Tree a = Null | Fork a (Tree a) (Tree a)

In Section 2.2, we considered the inorder traversal of this type of tree. However, suppose that
the labels of the tree are lists. Then we can define a traversal which we will call ‘mixorder’:

(i) Traverse the left subtree.

(ii) Visit first element of the root.

(iii) Traverse the right subtree.

(iv) Visit the second element of the root

(v) Traverse the left subtree.

...

This continues with visits to each element the root alternating with traversals of the left and
right subtrees until all elements of the tree have been produced. Mixorder may be implemented
functionally by

mixorder :: Tree [a]→ [a]
mixorder Null = [ ]
mixorder (Fork [ ] lt rt) = mixorder lt
mixorder (Fork (x : xs) lt rt) = mixorder lt ++ x : mixorder (Fork xs rt lt)

It follows that we can relate mixall to mixorder:

mixall = mixorder ·mkTree
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Figure 8.1. A perfect binary tree built by mkTree.

where

mkTree :: [[a]]→ Tree [a]
mkTree = foldr op Null

op [ ] t = t
op xs t = Node xs t (switch t)

switch Null = Null
switch (Fork xs lt rt) = if even (length xs) then Fork (reverse xs) rt lt

else Fork (reverse xs) lt rt

This may be proved by the fusion law using the intermediate result

mixorder (op xs t) = mix (mixorder t) xs

The function mkTree builds a perfect tree with left subtrees labelled with the non-empty lists
of the input and right subtrees with the reverse of each of these lists. The order of the children
in the right subtrees is dependent on the parity of the length of the label. Since the left and
right subtrees are shared, we construct the tree in O(n) time for an input of total length n. The
result of

mkTree [“two”, “seven”, “five”, “six”, “four”]

is shown in Figure 8.1, where for clarity we chosen our list of lists to be a list of strings.

8.2. Casting mixorder into loopless form using spines

We cast mixorder into loopless form using a similar method to that of inorder traversal of a
binary tree. However, as we need to swap between the spines of both left and right subtrees, we
decorate the rose trees that we will construct as follows:

data Rose a = Node a ([Rose a], [Rose a])

Then the function mkSpines, which converts a binary tree to a list of spines, may be easily
defined by

mkSpines :: Tree a→ [Rose a]
mkSpines t = addSpines t [ ]

where

addSpines Null sps = sps
addSpines (Fork x lt rt) sps = addSpines lt (Node x (lsp, rsp) : sps)

where (lsp, rsp) = (mkSpines lt,mkSpines rt)
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We can improve on this definition and eliminate the repeated evaluation of addSpines lt by
noticing that

addSpines t sps = mkSpines t ++ sps

Therefore, we have a new version of mkSpines that takes O(n) instead of exponential time in
the size of the tree, and in which addSpines is defined as follows:

addSpines Null sps = sps
addSpines (Fork x lt rt) sps = sps ++ Node x (lsp, rsp) : sps

where (lsp, rsp) = (mkSpines lt,mkSpines rt)

This also allows us to convert a perfect binary size of size n to a list of spines in O(n) time.

Using a variation our existing definition of step for inorder traversal given by

step [ ] = Nothing
step ((Node (x : xs) (lsp, rsp) : sp) : sps)

= if null xs then Just (x, consList rsp (consList sp sps))
else Just (x, consList rsp ((Node xs (rsp, lsp) : sp) : sps))

we have a loopless form for mixorder:

mixorder = unfoldr step · wrapList ·mkSpines

Our step function takes O(1) time and swaps between subspines lsp and rsp.

Since we can define mixall in terms of mixorder and mkTree it follows that

mixall = unfoldr step · wrapList ·mkSpines ·mkTree

8.3. Restoring the sharing of spines

While prolog takes O(n) time in the size of the tree built by mkTree, it takes exponential time
in the total length of the input list. The sharing of spines evident in Figure 8.1 has been lost.
Therefore, we need to fuse mkSpines and mkTree to restore this.

We begin by defining functions mkTreePairs and mkSpinePairs that output pairs of trees and
spines, respectively:

mkTreePairs xss = (mkTree xss, switch (mkTree xss))

mkSpinePairs (s, t) = (mkSpines s,mkSpines t)

Now, we have
switch (op xs t) = op′ xs (switch t)

where
op′ [ ] s = s
op′ xs s = if even (length xs) then Fork (reverse xs) s (switch s)

else Fork (reverse xs) (switch s) s

and it follows that
switch ·mkTree = foldr op′ Null

Moreover, using the banana-split law, we obtain

mkTreePairs = foldr opp (Null,Null)
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where

opp [ ] (s, t) = (s, t)
opp xs (s, t) = if even (length xs) then (Fork xs s t,Fork (reverse xs) t s)

else (Fork xs s t,Fork (reverse xs) s t)

It is also easy to show that

mkSpinePairs (opp xs (s, t)) = addPair xs (mkSpinePairs (s, t))

where

addPair [ ] (lsp, rsp) = (lsp, rsp)
addPair xs (lsp, rsp) = if even (length xs)

then (lsp ++ [Node xs (lsp, rsp)], rsp ++ [Node sx (rsp, lsp)])
else (lsp ++ [Node xs (lsp, rsp)], lsp ++ [Node sx (lsp, rsp)])
where sx = reverse xs

Using the fusion law, we can therefore define a function shareSpines which restores the sharing
of the spines in our tree:

shareSpines = foldr addPair ([ ], [ ])

This allows us to modify our loopless form for mixall to

mixall = unfoldr step · wrapList · fst · shareSpines

We similarly have

reverse ·mixall = unfoldr step · wrapList · snd · shareSpines

8.4. Splicing to achieve looplessness

Our new prolog is an improvement, but it still takes O(n2) time, falling short of the O(n) time
that we require. Since addPair adds new elements to the rear of each spine lsp and rsp, and step
deletes elements from the front of these spines, we could use the approach previously employed
and introduce real-time queues. Instead, however, we will continue to derive an implementation
that does not require the use of laziness in this way.

As we wish to avoid adding elements to the end of the lists of spines, we could instead cons
them to the front and reverse the lists afterwards. For example, we could replace shareSpines
with a new function shareSpines′ defined by

shareSpines′ = pair reverse · foldr addPair ′ ([ ], [ ])

where

addPair ′ [ ] (psl,psr) = (psl,psr)
addPair ′ xs (psl,psr) = if even (length xs)

then (Node xs (lsp, rsp) : psl,Node sx (rsp, lsp) : psr)
else (Node xs (lsp, rsp) : psl,Node sx (lsp, rsp) : psl)
where (lsp, rsp) = pair reverse (psl,psr)

sx = reverse xs
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Unfortunately, while we have removed the expensive concatenations, we now need to compute
pair reverse at each step, so addPair ′ still takes O(n) time.

To make progress, we need to exploit a pattern in the form of the spines lsp and rsp. If
lsp is the left spine of a node at a distance n in the top row tr and rsp is the left spine of the
corresponding node in the bottom row br, then lsp is the sequence formed by taking the first n
elements of tr and rsp is the sequence formed by taking p elements from tr and q elements from
br, where p + q = n. This can be encapsulated in a function splice defined by

splice (p, q) (tr,br) = take p tr ++ take q (drop p br)

and it follows that
lsp = splice (p + q, 0) (tr,br)
rsp = splice (p, q) (tr,br)

Therefore, if we can calculate p and q in each step, then we can extract lsp and rsp from tr and
br.

To implement this idea, we need to add extra information to the labels of our spines. This
is the pair of integers (p, q) and a boolean value swap which tells us whether the spines lsp and
rsp need to be swapped. Then we have the following definition of shareSpines′:

shareSpines′ xss
= pair reverse (foldr addPair ′ ([ ], [ ]) xss)

where addPair ′ xs (psl,psr) = if null xs then (psl,psr)
else (Node (xs,False,p, q) rs : psl,

Node (sx, even (length xs),p, q) rs : psr)
where sx = reverse xs

(p, q) = shape psr
rs = shareSpines′ xss

We also define shape, based upon our observations about the particular form of spines:

shape [ ] = (0, 0)
shape (Node (x : xs, swap,p, q) rs : psr) = if swap then (p, q + 1)

else (p + q, 1)

Therefore, the new version of step incorporating our idea of splicing is given by

step [ ] = Nothing
step (Node (x : xs, swap,p, q) rs : ps)

= if null xs then Just (x, sp ++ ps)
else Just (x, sp ++ Node (xs,¬swap,p, q) rs : ps)
where sp = if swap then splice (p + q, 0) rs

else splice (p, q) rs

8.5. Delaying evaluation of splice

We have a loopless functional algorithm for mixall under lazy evaluation, but under strict eval-
uation our definition of splice (p, q) rs takes O(p + q) steps. Therefore, we need to redefine step
using a further modified definition of rose trees:

data Rose a = Node a ([Rose a], [Rose a]) | Splice (Int, Int) ([Rose a], [Rose a])
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The extra constructor allows us to delay the evaluation of splice to ensure that step has the same
characteristics under both strict and lazy evaluation. It follows that step is defined by

step [ ] = Nothing
step (Node (x : xs, swap,p, q) rs : ps)

= if null xs then Just (x, consSplice sp ps)
else Just (x, consSplice sp (Node (xs,¬swap,p, q) rs : ps))
where sp = if swap then Splice (p + q, 0) rs

else Splice (p, q) rs
step (Splice (p, q) (t : tr,b : br) : ps)

= if p -- 0 then step (b : consSplice (Splice (p, q − 1) (tr,br)) ps)
else step (t : consSplice (Splice (p − 1, q) (tr,br)) ps)

where
consSplice (Splice (p, q) rs) ps = if p -- 0 ∧ q -- 0 then ps

else Splice (p, q) rs : ps

Because tr and br are lists of labels of nodes and not Splice values, this definition of step takes
O(1) time and we have a loopless functional algorithm for mixall derived using binary trees:

mixall = unfoldr step · prolog

where
prolog = fst · shareSpines′

The full listing of this algorithm is shown in Figure 8.2 overleaf.
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data Rose a = Node a ([Rose a], [Rose a]) | Splice (Int, Int) ([Rose a], [Rose a])

mixall = unfoldr step · prolog

prolog = fst · shareSpines′

shareSpines′ xss
= pair reverse (foldr addPair ′ ([ ], [ ]) xss)

where addPair ′ xs (psl,psr) = if null xs then (psl,psr)
else (Node (xs,False,p, q) rs : psl,

Node (sx, even (length xs),p, q) rs : psr)
where sx = reverse xs

(p, q) = shape psr
rs = shareSpines′ xss

shape [ ] = (0, 0)
shape (Node (x : xs, swap,p, q) rs : psr)

= if swap then (p, q + 1)
else (p + q, 1)

pair f (x, y) = (f x, f y)

consSplice (Splice (p, q) rs) ps
= if p -- 0 ∧ q -- 0 then ps

else Splice (p, q) rs : ps

step [ ] = Nothing
step (Node (x : xs, swap,p, q) rs : ps)

= if null xs then Just (x, consSplice sp ps)
else Just (x, consSplice sp (Node (xs,¬swap,p, q) rs : ps))
where sp = if swap then Splice (p + q, 0) rs

else Splice (p, q) rs
step (Splice (p, q) (t : tr,b : br) : ps)

= if p -- 0 then step (b : consSplice (Splice (p, q − 1) (tr,br)) ps)
= else step (t : consSplice (Splice (p − 1, q) (tr,br)) ps)

Figure 8.2. A loopless functional algorithm for mixall using binary trees.
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Part III

Applications

37



Chapter 9

Gray Codes

It is impossible, of course, to remove all ambiguity in the lowest-order digit except by a
scheme like one the Irish railways are said to have used of removing the last car of every
train because it is too susceptible to collision damage.

George R. Stibitz & Jules A. Larrivee, Mathematics and Computers, 1957

Suppose we wish to generate all subsets of a finite set {xn−1, . . . ,x1,x0}. This can be achieved
by visiting every n-tuple (an−1, . . . , a1, a0) where each aj is either 0 or 1. Then we can say that
xj is a member of the subset if and only if aj = 1. There are many orders in which we can run
through all n-tuples, but we will focus on the binary Gray code which visits all 2n strings of n
bits such that exactly one bit changes in each step in a simple and regular way.

9.1. Binary reflected Gray codes

The best known example of a binary Gray code is the binary reflected Gray code. If Gn denotes
the sequence of all strings of n bits in this order, then we have the following recursive definition:

Gn =

{
ε if n = 0
0Gn−1, 1GR

n−1 otherwise

where ε is the empty bit string, 0Gn−1 is the sequence Gn−1 with a 0 bit prefixed to each string
and 1GR

n−1 is the reverse of the sequence Gn−1 with a 1 bit prefixed to each string. It is clear
that exactly one bit changes in every step because the last string of Gn−1 is equal to the first
string of GR

n−1. The first and last strings differ by one bit, so the sequence is a cycle as displayed
in Figure 9.1. For example, the binary reflected Gray code for n = 4 is shown in Figure 9.2 with
the bit complemented in each step highlighted.

A straightforward imperative algorithm for generating binary reflected Gray codes is as fol-
lows:

Figure 9.1. A graphical representation of a binary reflected Gray code.
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0000̄ 0110̄ 1100̄ 1010̄
000̄1 011̄1 110̄1 101̄1
0011̄ 0101̄ 1111̄ 1001̄
00̄10 0̄100 11̄10 1̄000

Figure 9.2. A binary reflected Gray code.

ALGORITHM A (Binary reflected Gray generation). This algorithm generates all binary n- 1

tuples (an−1, . . . , a1, a0), starting with (0, . . . , 0, 0) and changing exactly one bit in each step.
We maintain a parity bit a∞ such that

a∞ = an−1 ⊕ · · · ⊕ a1 ⊕ a0.

A1. (Initialize) Set aj ← 0 for 0 ≤ j < n. Also set a∞ ← 0.

A2. (Visit) Visit the n-tuple (an−1, . . . , a1, a0).

A3. (Change parity) Set a∞ ← 1− a∞.

A4. (Choose j) If a∞ = 1, set j ← 0. Otherwise let j ≥ 1 be the minimum such that aj−1 = 1.

A5. (Complement coordinate j) Terminate if j = n. Otherwise set aj ← 1 − aj and return to
A2.

This algorithm is based upon a method for solving the Chinese ring puzzle. The goal of this
puzzle is to remove interlocking rings from a bar. By the nature of the rings, only two basic
types of move are possible:

(i) The rightmost ring can be removed or replaced at any time.

(ii) Any other ring can be removed and replaced if and only if the ring to its right is on the
bar and all rings to the right of that one are off.

If we indicate that a ring is on the bar by a 1 bit and off the bar by a 0 bit, then we wish to reach
the n-tuple (0, . . . , 0, 0). A binary reflected Gray code results from reversing the steps taken to
achieve this.

While we only complement one bit aj per visit to (an−1, . . . , a1, a0), we need the loop in A4
to choose the appropriate value of j. However, in this case, we can make the algorithm faster
by replacing the loop with focus pointers which implicitly represent a value that allows us to
calculate j directly. Therefore, we have a loopless imperative algorithm for generating binary
reflected Gray codes:

ALGORITHM B (Loopless Binary reflected Gray generation). This loopless algorithm generates 2

all binary n-tuples (an−1, . . . , a1, a0), starting with (0, . . . , 0, 0) and changing exactly one bit in
each step. Instead of maintaining a parity bit, we use an array of focus pointers (fn, . . . , f1, f0).

B1. (Initialize) Set aj ← 0 and fj ← j for 0 ≤ j < n. Also set fn ← n.

B2. (Visit) Visit the n-tuple (an−1, . . . , a1, a0).

1Knuth (2005a) 6.
2Knuth (2005a) 9–11, based upon Bitner et al. (1976).
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B3. (Choose j) Set j ← f0 and f0 ← 0. Terminate if j = n, otherwise set fj ← fj+1 and
fj+1 ← j + 1.

B4. (Complement coordinate j) Set aj ← 1− aj . Return to B2.

We perform only five assignment operations and one test for termination between each visit to
a generated n-tuple.

9.2. Mixing and Gray codes

Functionally, the transitions in the Gray code algorithm can be easily expressed using mixall: 3

gray = mixall · singletons
where singletons n = [[i] | i ← [n− 1,n− 2. . 0]]

Our transitions are chosen simply to be the indices j of the coordinates (an−1, . . . , a1, a0) that
we should complement. For example, the transitions necessary to generate the binary reflected
Gray code for n = 4 in Figure 9.2 are

0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0.

Clearly, most transitions occur at the least significant bit, so our definition of mix, which we
could describe as mixing from the right, is ideal.

We can make this loopless by composing our loopless functional algorithm for mixall us-
ing rose trees from Chapter 5 with singletons. However, because the two trees generated by
foldr tmix (Nothing ,Nothing) have the same preorder traversals in the case of Gray codes, we
need only one tree and can simplify prolog as follows:

prolog n = (wrapQueue · wrapTree · foldr tmix Nothing) [n− 1,n− 2. . 0]

where
tmix n mxt = mxt � Just (Node n empty)�mxt

The step function is unchanged, as shown in Figure 9.5 at the end of this chapter.

9.3. Gray codes using cyclic lists

We can condense the loopless definition of gray further by adopting cyclic lists instead of queues.
We follow the idea of our loopless functional algorithm for mixall using binary trees from Chap-
ter 8 by maintaining pairs of values in the labels of spines. These are represented by undecorated
rose trees:

data Rose a = Node a [Rose a]

As our original algorithm for Gray codes involved only singleton lists, we know that they are of
odd length and unaffected by reversal. Therefore, the bottom row of spines br will be the same
as the top row tr and we maintain just one of these in a cyclic list. Hence, prolog takes the
shorter form

prolog n = consPair (length tr, tr) [ ]
where tr = [Node (m, x) tr | (m, x)← ns]

ns = zip [0. . ] [0. .n− 1]

3Bird (2005b).
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(a) Balanced (b) Complementary

0000̄ 0110̄ 10̄01 110̄0
000̄1 0̄111 1̄101 11̄10
0011̄ 11̄11 0101̄ 101̄0
00̄10 101̄1 0̄100 1̄000

0000̄ 011̄0 1111̄ 100̄1
000̄1 0100̄ 111̄0 1011̄
0011̄ 010̄1 1100̄ 101̄0
00̄10 0̄111 11̄01 1̄000

(c) Maximum gap

0̄0000 11110̄ 1̄0001 010̄10 0̄0101 11011̄ 1̄0100 011̄11
10̄000 11̄111 00̄001 01̄110 10̄101 11̄010 00̄100 01̄011
110̄00 101̄11 01001̄ 00110̄ 111̄01 100̄10 01100̄ 00011̄
1110̄0 1001̄1 0100̄0 0011̄1 1100̄1 1011̄0 0110̄1 0001̄0

Figure 9.3. Constrained binary Gray codes.

while step is modified to

step [ ] = Nothing
step ((m,Node (n, x) tr : ts) : nts) = Just (x, consPair (n, tr) (consPair (m− 1, ts) nts))

where
consPair (n, ts) nts = if n -- 0 then nts

else (n, ts) : nts

9.4. Constrained binary Gray codes

We may wish to generate binary Gray codes that have additional properties above their simple 4

definition. For example, in some applications it is desirable for the number of transitions be
more evenly distributed throughout the bit positions than in the binary reflected Gray code. In
this arrangement, the lowest order bit changes 2n−1 times, while the highest order bit changes
only twice including the return to the first element. As listed in Figure 9.3(a) and illustrated in
Figure 9.4(a), it is possible to generate a balanced binary Gray code in which an equal number
of transitions occur at each bit position for all values of n equal to 2k where k ≥ 1.

Alternatively, for even values of n, it is possible to produce a complementary binary Gray code
in which when represented in a circular way, as shown in Figure 9.4(b), every string an−1 . . . a1a0

is diametrically opposite its complement ān−1 . . . ā1ā0. The case n = 4 is shown in Figure 9.3(b).

We can also aim to maximize the ‘gap’ in a Gray code. This is the shortest maximal consecu-
tive sequence of 0 or 1 bits amongst all bit positions. Exact values for the length of the maximal
gap are unknown for n ≥ 8, but the table below shows values found by exhaustive computer
searches:

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 2 2 4 4 5 5 6 8 8 8 9 9 11 11

The case n = 5 appears in Figure 9.3(c).

4Savage (1997) 608–609 and Goddyn & Gvozdjak (2003).
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(a) Balanced (b) Complementary

Figure 9.4. Graphical representations of constrained binary Gray codes.

9.5. Non-binary Gray codes

It is also possible to construct Gray code sequences for more general n-tuples (an−1, . . . a1, a0)
where 0 ≤ aj < mj . The radices mj may be different for each coordinate, but when 0 ≤ aj < 10
for all j, we have decimal digits. A suitable sequence would then be the reflected decimal Gray
code in which each coordinate moves alternatively from 0 up to 9 and then back down from 9 to
0. For example, we have the following sequence for n = 3:

000, 001, . . . , 009, 019, 018, . . . , 011, 010, 020, 021, . . . , 091, 090, 190, 191, . . . , 900.

In general our Gray code is defined such that in each step only one coordinate changes, and only
by ±1. We can then generalize Algorithms A and B as follows:

ALGORITHM C (Loopless reflected mixed-radix Gray generation). This loopless algorithm gen- 5

erates all n-tuples (an−1, . . . , a1, a0) such that 0 ≤ aj < mj for 0 ≤ j < n, starting with
(0, . . . , 0, 0) and changing exactly one coordinate by ±1 in each step. We use an array of focus
pointers (fn, . . . , f1, f0) and an array of directions (on−1, . . . , o1, o0). Also each radix mj ≥ 2.

C1. (Initialize) Set aj ← 0, fj ← j, and oj ← 1 for 0 ≤ j < n. Also set fn ← n.

C2. (Visit) Visit the n-tuple (an−1, . . . , a1, a0).

C3. (Choose j) Set j ← f0 and f0 ← 0.

C4. (Change coordinate j) Terminate if j = n. Otherwise set aj ← aj + oj .

C5. (Reflect?) If aj = 0 or aj = mj − 1, set oj ← −oj , fj ← fj+1 and fj+1 ← j + 1. Return
to C2.

An alternative to the reflected decimal Gray code is the modular decimal Gray code in which
digits increase by 1 mod 10, wrapping around from 9 to 0 as follows in the case n = 3:

000, 001, . . . , 009, 019, 010, . . . , 017, 018, 028, 029, . . . , 099, 090, 190, 191, . . . , 900.

This may be generated by a method similar to Algorithm C.

5Knuth (2005a) 20.
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data Rose a = Node a (Queue (Rose a))

gray = unfoldr step · prolog

prolog n = (wrapQueue · wrapTree · foldr tmix Nothing) ns
where ns = [n− 1,n− 2. . 0]

tmix n mxt = mxt � Just (Node n empty)�mxt

Nothing �myt = myt
mxt �Nothing = mxt
Just (Node x xtq)� Just yt = Just (Node x (insert xtq yt))

wrapTree Nothing = empty
wrapTree (Just xt) = insert empty xt

wrapQueue xtq = consQueue xtq [ ]

consQueue xtq xtqs = if isEmpty xtq then xtqs
else xtq : xtqs

step [ ] = Nothing
step (xtq : xtqs) = Just (x, consQueue ytq (consQueue ztq xtqs))

where (Node x ytq, ztq) = remove xtq

Figure 9.5. A loopless functional algorithm for gray using rose trees.
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Chapter 10

Generating Ideals of a Forest Poset

Both the man of science and the man of art live always at the edge of mystery, surrounded
by it. Both, as a measure of their creation, have always had to do with the harmonization
of what is new with what is familiar, with the balance between novelty and synthesis, with
the struggle to make partial order in total chaos... This cannot be an easy life.

J. Robert Oppenheimer, Prospects in the Arts and Sciences, 1954

A ‘forest poset’ is a set of trees together with a partial order. We can generalize the imperative
algorithm for non-binary Gray codes in such a way that we can generate the ideals of a poset in
an order analogous to the reflected Gray code.

10.1. The Koda-Ruskey algorithm

The order we choose corresponds to a representation of ideals gained by recolouring nodes. More
precisely,

(i) Each node is coloured either white or black.

(ii) Two consecutive colourings must differ in the colour assigned to exactly one node.

(iii) If a node j is coloured white and k is a child of j, then k cannot be coloured black.

The ideals will then correspond to the nodes coloured black. It follows that our ordering will be
such that exactly one node is recoloured in each step. We can see this in Figure 10.1.

Representing white nodes by a 0 bit and black nodes by a 1 bit, we also have a representation
in terms of binary n-tuples (a1, a2, . . . , an) where the parity of aj corresponds to the colouring
of the node labelled j. If aj = 1, then j is a node in the current ideal. This leads us to formulate
the imperative Koda-Ruskey algorithm:

ALGORITHM D (Loopless reflected subforest generation). This loopless algorithm generates all 1

binary n-tuples (a1, a2, . . . , an) such that ap ≥ aq whenever p is a parent of q in a forest whose
nodes are (1, . . . ,n) when arranged in postorder. It starts with (0, . . . , 0, 0) and changes exactly
one bit in each step. We use an array of focus pointers (f0, f1 . . . , fn) and two arrays of pointers
(l0, l1, . . . , ln) and (r0, r1, . . . , rn) to represent a doubly linked list. This contains all nodes of a
subforest and their children, with r0 pointing to its leftmost node and l0 its rightmost.

The forest is described by an array (c0, c1, . . . , cn). If p has no children, then cp = 0. Otherwise
cp is the leftmost child of p. Also c0 is the leftmost root of this forest. When the algorithm is

1Knuth (2005a) 20–21, based upon Koda & Ruskey (1993) 337–339.
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Figure 10.1. Ideals of a forest poset.

initialized, the doubly linked list has values rp = q and lq = p whenever p and q are consecutive
children of the same family.

To illustrate this construction, consider the forest in Figure 10.2, with nodes arranged in
postorder. It follows that (c0, . . . , c7) = (2, 0, 1, 0, 0, 0, 4, 3), and r2 = 7, l7 = 2, r3 = 6, l6 = 3,
r4 = 5 and l5 = 2.

D1. (Initialize) Set aj ← 0 and fj ← j for 1 ≤ j < n. Also set f0 ← 0, l0 ← n, rn ← 0, r0 ← c0

and lc0 ← 0.

D2. (Visit) Visit the subforest defined by (a1, a2, . . . , an).

D3. (Choose p) Set q ← l0 and p← fq. Also set fq ← q.

D4. (Check ap) Terminate if p = 0. Otherwise, if ap = 1, go to D6.

D5. (Insert p’s children) Set ap ← 1. Then, if cp 6= 0, set q ← rp, lq ← p− 1, rp−1 ← q, rp ← cp

and lcp
← p. Go to D7.

D6. (Remove p’s children) Set ap ← 0. Then, if cp 6= 0, set q ← rp−1, rp ← q and lq ← p.

D7. (Make p passive) Set fp ← flp and flp ← lp. Return to D2.

The basic idea of this algorithm is to interleave the sequences of colourings of each tree in
the forest. We can see in the first line of Figure 10.2 the first colouring of the left tree combined
in turn with each of the colourings of the right tree. Similarly, the second line shows the second
colouring of the left tree, but this time with the colourings of the of the right tree in reverse
order. Finally, the third line consists of the third colouring of the left tree with all the colourings
of the right tree in their original order.

We can illustrate the connection with loopless reflected mixed-radix Gray generation by
considering the forest of degenerate non-branching trees in Figure 10.3. This has 3 × 2 × 4 × 2
ideals which correspond to the 4-tuples (x1,x2,x3,x4) where xj is the number of nodes coloured
black in the jth tree. When our algorithm is applied to this forest, it visits the ideals in the
same order as the reflected mixed-radix Gray code on radices (3, 2, 4, 2).

10.2. Mixing and ideals of a forest poset

We define the colouring of a forest of rose trees with distinct integer labels using a function koda 2

based upon mixall and the prelude function map:

koda :: [Rose a]→ [a]
koda = mixall ·map ruskey

where ruskey (Node x ts) = x : koda ts

2Bird (2005b). A functional algorithm using continuations which generates the trees themselves appears in
Filliâtre & Pottier (2003) 947–949.
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Figure 10.2. A forest poset.

We begin with each node coloured white and our transitions are to recolour the node with the
specified label. We then interleave the colours of the subtrees using mixall. The root of each
tree is coloured black and then the colourings of the subtrees of this tree are also interleaved. It
follows that for the forest in Figure 10.2 the transitions between colourings, and therefore ideals
of the forest poset, are

7, 6, 5, 4, 5, 3, 5, 4, 5, 6, 2, 6, 5, 4, 5, 3, 5, 4, 5, 6, 7, 1, 7, 6, 5, 4, 5, 3, 5, 4, 5, 6.

To obtain a loopless functional algorithm for koda, we modify our loopless version of mixall
using rose trees from Chapter 5. During that derivation we defined mixall by

mixall = fst · foldr pmix ([ ], [ ])

It follows that we can use fold-map fusion to fuse mixall in this form to map ruskey . Hence,

koda = fst · foldr (pmix · ruskey) ([ ], [ ])

Moreover, by the definition of ruskey , we have

pmix (ruskey (Node x ts)) = pmix (x : koda ts) ([ ], [ ])

Now, by the definition of pmix, we obtain the following:

pmix (ruskey (Node x ts)) (ys, sy) = (ys, sy)� ([x], [x])� (pmix (koda ts) (sy , ys))

We would like to express pmix (koda ts) in terms of foldr. Using the definitions of koda and
mixall, we have

pmix (koda (t : ts)) = pmix (mix (ruskey t) (koda ts))

By the associativity of mix and xim, we can use the identity

pmix (mix xs ys) = pmix xs · pmix ys

1

2

3 4

5

6

7

Figure 10.3. A forest poset of degenerate non-branching trees.
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to obtain a recursive definition of pmix · koda:

pmix (koda [ ]) = id
pmix (koda (t : ts)) = pmix (ruskey t) · pmix (koda ts)

It follows that

pmix (koda ts) (sy , ys) = foldr (pmix · ruskey) (sy , ty) ts

by the definition of foldr. If we define a function qmix by

qmix = pmix · ruskey

then
koda = fst · foldr qmix ([ ], [ ])

Hence,

qmix (Node x ts) (ys, sy) = (ys, sy)� ([x], [x])� (foldr qmix (sy , ys) ts)

In common with our derivation of mixall, we introduce another function, kmix, satisfying

pair preorder · kmix t = qmix t · pair preorder

This may be defined by

kmix (Node x ts) (myt,mty) = (myt,mty)⊗ (mxt,mxt)⊗ (foldr kmix (mty ,mty) ts)
where mxt = Just (Node x [ ])

We are again using roses trees along with the type Maybe. Therefore, we have the loopless form

koda = unfoldr step · prolog

where
prolog = wrapList · wrapTree · fst · foldr kmix (Nothing ,Nothing)

The loopless functional algorithm for koda in Figure 10.4, on the next page, follows by the 3

conversion of lists to real-time queues. We also need to retain our original definition of rose trees
using lists since the input rose tree will be represented in this way.

3We could avoid having two types of rose tree by formulating our input using queues. However, we would then
need to replace foldr by a fold for queues foldQueue defined by

foldQueue :: (a → b → b) → b → Queue a → b
foldQueue f e xq = if isEmpty xq then e

else f y (foldQueue yq)
where (y, yq) = remove xq
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data Rose a = Node a [Rose a]
data Rose′ a = Node′ a (Queue (Rose′ a))

koda = unfoldr step · prolog

prolog = wrapQueue · wrapTree · fst · foldr kmix (Nothing ,Nothing)

kmix (Node x ts) (myt,mty)
= (myt,mty)⊗ (mxt,mxt)⊗ (foldr kmix (mty ,mty) ts)

where mxt = Just (Node′ x empty)

(mxt,mtx)⊗ (myt,mty) = (mxt �myt,mty �mtx)

Nothing �myt = myt
mxt �Nothing = mxt
Just (Node′ x xtq)� Just yt

= Just (Node′ x (insert xtq yt))

wrapTree Nothing = empty
wrapTree (Just xt) = insert empty xt

wrapQueue xtq = consQueue xtq [ ]

consQueue xtq xtqs = if isEmpty xtq then xtqs
else xtq : xtqs

step [ ] = Nothing
step (xtq : xtqs) = Just (x, consQueue ytq (consQueue ztq xtqs))

where (Node′ x ytq, ztq) = remove xtq

Figure 10.4. A loopless functional algorithm for koda using rose trees.
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Chapter 11

Generating Ideals of an Acyclic Poset

Ideals are like stars; you will not succeed in touching them with your hands. But like the
seafaring man on the desert of waters, you choose them as your guides, and following them
you will reach your destiny.

Carl Schurz, Speech, 1859

We now consider a variation on the generation of ideals of a forest poset in which the edges in
each tree are directed. Therefore, given a digraph that is totally acyclic, even if the direction of
the edges is ignored, we construct an algorithm that generates its ideals.

11.1. The Li-Ruskey algorithm

In common with the Koda-Ruskey algorithm, we recolour nodes to generate a sequence of distinct
colourings represented by bit strings. Then the ideals of our acyclic poset will correspond to the
nodes coloured black. This will be subject to the following constraints:

(i) Each node is coloured either white or black.

(ii) Two consecutive colourings must differ in the colour assigned to exactly one node.

(iii) If a node i is coloured white and i → j is an edge directed downwards, then j cannot be
coloured black.

Clearly, we will be able to describe the transitions between one colouring and the next by naming
a single node. Moreover, all children of a white node must themselves be white. This is shown
by the ideals of Figure 11.1 in which all directions point downwards. If a white node corresponds
to a 0 bit and a black node to 1 bit, we have a formulation of the problem in terms of binary
n-tuples (a1, a2, . . . , an):

(i) Whenever i← j is an edge in a total acyclic digraph, then ai ≤ aj .

Figure 11.1. Ideals of an acyclic poset.
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Figure 11.2. A cyclic digraph.

(ii) Exactly one bit is changed in each step.

Therefore, our n-tuples are in Gray code order. The second restriction explains why we only
consider totally acyclic posets. The digraph in Figure 11.2 has ideals represented by

0000 0001 0011 0101 0111 1111

However, to order these such that exactly one bit changes at a time we need to be able to
alternate between n-tuples of odd and even parity, and in this case we have two odd and four
even n-tuples.

We can also see that we will not necessarily be able to begin with every node coloured white.
For example the ideals in Figure 11.1 have binary representation

00001̄0 101111̄ 11001̄0
0000̄00 101̄110 1100̄00
00010̄0 10011̄0 11010̄0
000̄110 1001̄00 110̄110
001110̄ 10000̄0 111110̄
0̄01111 10̄0010 111111

where the nodes are labelled in preorder as in Figure 11.3.

An exception occurs when we have a digraph consisting of a forest of directed trees in which
all edges are directed downwards. It follows that we have a forest of rose trees and we can
apply the Koda-Ruskey algorithm in which the starting configuration is always (0, 0, . . . , 0). Our
general algorithm is the Li-Ruskey algorithm, formulated imperatively using coroutines. 1

11.2. Mixing and ideals of an acyclic poset

Functionally, we can represent totally acyclic digraphs by a forest of directed trees of type

data Dtree = Node Int [(Direction,Dtree)]

where
data Direction = Down | Up

For example, Figure 11.3 would be represented by the forest

[Node 1 [(Down,Node 2 [ ])],Node 3 [Up,Node 4 [ ]), (Up,Node 5 [ ]), (Down,Node 6 [ ])]

1Knuth & Ruskey (2004).
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Figure 11.3. An acyclic digraph with two connected components.

In common with the function koda in Section 10.2, which generated the transitions between
ideals of a forest poset, we can define a function trans in terms of mixall and the prelude function
map:

trans :: [Dtree]→ [Int]
trans = mixall ·map treeTrans

The transitions again represent the recolouring of the node with the specified label, though in
this case, as explained above, we do not necessarily begin with all nodes coloured white. The
transitions between the colours of Figure 11.3 are

5, 4, 5, 3, 6, 1, 6, 3, 5, 4, 5, 2, 5, 4, 5, 3, 6.

Initially, all nodes are white except node 5 which must be coloured black.

We now need to derive a function treeTrans with type signature

treeTrans :: Dtree → [Dtree]

This will generate the transitions for a single directed tree in the forest. To help us define
treeTrans, we split the transition sequence into three parts:

(i) A white sequence ws in which the root node is coloured white.

(ii) A black sequence bs in which the root node is coloured black.

(iii) A Gray sequence gs which combines ws and bs by running through the white sequence,
recolouring the root to black and then running through the black sequence.

Clearly using this formulation the root of each directed tree in the forest will start with the root
coloured white. It is also easy to see that

gs = ws ++ [n] ++ bs

The function mkTrans n will construct the Gray transitions for a directed tree with root labelled
n:

mkGtrans n (ws,bs) = (ws,bs,ws ++ [n] ++ bs)

Now, suppose we have a directed tree

u = Node n ((d, t) : dts)

and denote the white and black sequences associated with dts by (wy ,bs), and the white, black
and Gray sequences associated with t by (wx,bx, gx). If d is Down, then because the bit
representing the root of t has to be 0, the white sequence of u must be an interleaving of wx
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with wy , or possibly with one or both lists reversed. By similar reasoning, the black sequences
of u must be some interleaving of gx with by because the bit representing the root of t could
be either 0 or 1. In the case that d is Up, the white sequence of u will be some interleaving of
gx with wy and the black sequence some interleaving of bx and by . If we can calculate these
interleavings, then our definition of treeTrans will follow.

We introduce the notation
gx

∣∣ 0 : ix  1 : ex

to describe a Gray sequence beginning with a sequence 0 : ix and ending in a sequence 1 : ex.
This means that the bit representing root of t will be 0 and it will be coloured white.

We know that a Gray sequence is a white sequence followed by a recolouring of the root and
then followed by a black sequence, so suppose we have intermediate configurations mx and my .
It follows that

wx
∣∣ 0 : ix  0 : mx and bx

∣∣ 1 : mx  1 : ex

and the configurations of the subtrees dts are

wy
∣∣ iy  my and by

∣∣ my  ey

We need a function to interleave our sequences, so it would seem sensible to try to use mix.
However, when d is Down, we cannot choose mix wx wy for the white sequence of u because

mix wx wy

∣∣∣∣ 0 : ix ++ iy  0 : mx ++ my if even (length wx)
0 : ix ++ iy  0 : mx ++ iy if odd (length wx)

and we would be unable to construct an appropriate black sequence to follow since neither the
beginning nor end of gx involves mx. Similarly, because iy does not appear at the beginning or
end of by , we cannot define the sequence by

mix (reverse wx) wy

∣∣∣∣ 0 : mx ++ iy  0 : ix ++ my if even (length wx)
0 : mx ++ iy  0 : ix ++ iy if odd (length wx)

For identical reasons, it is also not possible to use

mix (reverse wx) (reverse wy)
∣∣∣∣ 0 : mx ++ my  0 : ix ++ iy if even (length wx)

0 : mx ++ my  0 : ix ++ my if odd (length wx)

Therefore, we define mex, a variation of mix by

mex wx wy = reverse (mix wx (reverse wy))

It follows that

mex wx wy

∣∣∣∣ 0 : mx ++ iy  0 : ix ++ my if even (length wx)
0 : mx ++ my  0 : ix ++ my if odd (length wx)

Clearly, since the beginning of gx involves ix and the beginning of by involves my , this is an
appropriate interleaving. It is then easy to define the black sequence for u:

mix gx by

∣∣∣∣ 0 : ix ++ my  1 : ex ++ ey if even (length gx)
0 : ix ++ my  1 : ex ++ my if odd (length gx)
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We can also apply mex to construct the white sequence of u when d is Up. Then we have

mex (reverse gx) wy

∣∣∣∣ 0 : ix ++ iy  1 : ex ++ my if even (length gx)
0 : ix ++ my  1 : ex ++ my if odd (length gx)

The matching black sequence for u is given by

mix (reverse bx) by

∣∣∣∣ 1 : ex ++ my  1 : mx ++ ey if even (length bx)
1 : ex ++ my  1 : mx ++ my if odd (length bx)

It follows that the white and black sequences of u can be generated by a function mkWBtrans:

mkWBtrans (Down, (wx,bx, gx)) (wy ,by) = (mex wx wy ,mix gx by)
mkWBtrans (Up, (wx,bx, gx)) (wy ,by) = (mex (reverse gx) wy ,mix (reverse bx) by)

After combining these two sequences into a Gray sequence using mkGtrans, we can calculate the
transitions of a directed tree using an appropriate fold function for directed trees defined by

foldTree :: (Int→ [(Direction, a)]→ a)→ Dtree → a
foldTree f (Node n dts) = f n [(d, foldTree f t) | (d, t)← dts]

Hence, our function treeTrans is given by

treeTrans = gray · foldTree mkWBGtrans

where
mkWBGtrans n = mkGtrans n · foldr mkWBtrans ([ ], [ ])

gray (ws,bs, gs) = gs

11.3. Choosing the starting configuration

To find the starting configuration for a Gray sequence, we need a function start with type
signature

start :: [Dtree]→ [Bit]

where it is sufficient to define the type Bit by

type Bit = Int

In a similar way to the generation of transitions, we can formulate start in terms of the starting
configurations of each directed tree in the forest. Hence, we use the prelude functions concat
and map to define

start = concat ·map treeStart

Now, to compute the necessary configurations, we need the parity of the white, black and
Gray sequences. We introduce boolean values elwx and elbx to indicate whether wx and bx,
respectively, are of even length. It clearly follows that the resulting Gray sequence gx will be of
even length only if one constituent sequence is of odd length. Therefore,

elgx = (elwx 6= elbx)
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These observations allow us to construct a function mkWBconfigs defined by

mkWBconfigs (Down, (elwx, elbx, ix,mx, ex)) (elwy , elby , iy ,my , ey)∣∣∣∣∣∣∣∣
elwx ∧ elbx = (elwy ,False, 0 : mx ++ iy , 0 : ix ++ my , 1 : ex ++ my)
elwx ∧ ¬elbx = (elwy , elby , 0 : mx ++ iy , 0 : ix ++ my , 1 : ex ++ ey)
¬elwx ∧ elbx = (False, elby , 0 : mx ++ my , 0 : ix ++ my , 1 : ex ++ ey)
¬elwx ∧ ¬elbx = (False,False, 0 : mx ++ my , 0 : ix ++ my , 1 : ex ++ my)

mkWBconfigs (Up, (elwx, elbx, ix,mx, ex)) (elwy , elby , iy ,my , ey)∣∣∣∣∣∣∣∣
elwx ∧ elbx = (False, elby , 0 : ix ++ my , 1 : ex ++ my , 1 : mx ++ ey)
elwx ∧ ¬elbx = (elwy ,False, 0 : ix ++ iy , 1 : ex ++ my , 1 : mx ++ my)
¬elwx ∧ elbx = (elwy , elby , 0 : ix ++ my , 1 : ex ++ my , 1 : mx ++ ey)
¬elwx ∧ ¬elbx = (False,False, 0 : ix ++ my , 1 : ex ++ my , 1 : mx ++ my)

We then use foldTree once more to obtain

treeStart = third · foldTree treeConfigs

where

treeConfigs n = foldr mkWBconfigs (True,True, [ ], [ ], [ ])

third (elwy , elby , iy ,my , ey) = 0 : iy

The full listings of our functional algorithms for trans and start appear in Figure 11.4 on the
page that follows.
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data Dtree = Node Int [(Direction,Dtree)]
data Direction = Down | Up
type Bit = Int

trans = mixall ·map treeTrans

treeTrans = gray · foldTree mkWBGtrans

mkWBGtrans n = mkGtrans n · foldr mkWBtrans ([ ], [ ])

mkWBtrans (Down, (wx,bx, gx)) (wy ,by)
= (mex wx wy ,mix gx by)

mkWBtrans (Up, (wx,bx, gx)) (wy ,by)
= (mex (reverse gx) wy ,mix (reverse bx) by)

mex wx wy = reverse (mix wx (reverse wy))

mix [ ] ys = ys
mix (x : xs) ys = ys ++ x : mix xs (reverse ys)

mixall = foldr mix [ ]

mkGtrans n (ws,bs) = (ws,bs,ws ++ [n] ++ bs)

foldTree f (Node n dts) = f n [(d, foldTree f t) | (d, t)← dts]

gray (ws,bs, gs) = gs

start = concat ·map treeStart

treeStart = third · foldTree treeConfigs

treeConfigs n = foldr mkWBconfigs (True,True, [ ], [ ], [ ])

third (elwy , elby , iy ,my , ey) = 0 : iy

mkWBconfigs (Down, (elwx, elbx, ix,mx, ex)) (elwy , elby , iy ,my , ey)∣∣∣∣∣∣∣∣
elwx ∧ elbx = (elwy ,False, 0 : mx ++ iy , 0 : ix ++ my , 1 : ex ++ my)
elwx ∧ ¬elbx = (elwy , elby , 0 : mx ++ iy , 0 : ix ++ my , 1 : ex ++ ey)
¬elwx ∧ elbx = (False, elby , 0 : mx ++ my , 0 : ix ++ my , 1 : ex ++ ey)
¬elwx ∧ ¬elbx = (False,False, 0 : mx ++ my , 0 : ix ++ my , 1 : ex ++ my)

mkWBconfigs (Up, (elwx, elbx, ix,mx, ex)) (elwy , elby , iy ,my , ey)∣∣∣∣∣∣∣∣
elwx ∧ elbx = (False, elby , 0 : ix ++ my , 1 : ex ++ my , 1 : mx ++ ey)
elwx ∧ ¬elbx = (elwy ,False, 0 : ix ++ iy , 1 : ex ++ my , 1 : mx ++ my)
¬elwx ∧ elbx = (elwy , elby , 0 : ix ++ my , 1 : ex ++ my , 1 : mx ++ ey)
¬elwx ∧ ¬elbx = (False,False, 0 : ix ++ my , 1 : ex ++ my , 1 : mx ++ my)

Figure 11.4. Functional algorithms for trans and start.
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Chapter 12

Generating Permutations

Promises are the uniquely human way of ordering the future, making it predictable and
reliable to the extent that this is humanly possible.

Hannah Arendt, ‘Civil Disobedience’, Crises of the Republic, 1972

A permutation of a set is an arrangement of the elements in that set in some order. The inverse
permutation of a1a2 . . . an is a permutation a′1a

′
2 . . . a′n such that a′k = j if and only if aj = k.

We consider a Gray code for permutations to be a sequence in which successive permutations
differ only by the interchange of two adjacent elements, and if we interchange two elements in the
last permutation, we return to the starting point. An indication that this is possible follows if we
consider the bubble sort algorithm. Unsorted data can clearly be represented as a permutation
and the bubble sort algorithm sorts this into some order, in effect another permutation, using
adjacent interchanges.

12.1. Gray codes for permutations and the Johnson-Trotter algorithm

We can generate a Gray code for all permutations by adjacent interchanges using the recursive
scheme illustrated in Figure 12.1. The element n is inserted into each position in the permutation
of n − 1, moving alternatively from right to left and then left to right. From this, we obtain a
formulation known as ‘plain changes’, graphically represented in Figure 12.2.

An imperative algorithm for the generation of all permutations by plain changes is the
Johnson-Trotter algorithm, as follows:

ALGORITHM E (Plain changes). This algorithm generates all permutations of a given sequence 1

a1a2 . . . an of n distinct elements, exchanging adjacent pairs of elements in each step. We use
an array c1c2 . . . cn to represent pairs of not necessarily adjacent elements that are out of order,
with 0 ≤ cj < j for 1 ≤ j ≤ n. An array of directions o1o2 . . . on indicates how these cj change.

E1. (Initialize) Set cj ← 0 and oj ← 1 for 1 ≤ j ≤ n.

E2. (Visit) Visit the permutation a1a2 . . . an.

E3. (Prepare for change) Set j ← n and s← 0.

E4. (Ready to change?) Set q ← cj + oj . If q < 0, go to E7. If q = j, go to E6.

E5. (Change) Exchange aj−cj+s ↔ aj−q+s. Then set cj ← q and return to E2.

E6. (Increase s) Terminate if j = 1. Otherwise set s← s + 1.

1Knuth (2005a) 40–44, based upon Johnson (1963) and Trotter (1962).
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1 1̄2̄ 12̄3̄ 123̄4̄ 4̄3̄21
2̄1̄ 1̄3̄2 12̄4̄3 34̄2̄1

31̄2̄ 1̄4̄23 324̄1̄
3̄2̄1 412̄3̄ 3̄2̄14
23̄1̄ 4̄1̄32 231̄4̄
2̄1̄3 14̄3̄2 23̄4̄1

134̄2̄ 2̄4̄31
1̄3̄24 423̄1̄
312̄4̄ 4̄2̄13
31̄4̄2 24̄1̄3
3̄4̄12 214̄3̄
431̄2̄ 2̄1̄34

Figure 12.1. Plain changes.

E7. (Switch direction) Set oj ← −oj and j ← j − 1. Return to E4.

The sequence c1c2 . . . cn is known as the inversion of a permutation a1a2 . . . an. Every inter-
change of adjacent elements changes the number of elements that are out of order by ±1. For
n = 4, we have inversions as follows:

0000̄ 0013̄ 0020̄ 0123̄ 011̄0 0103̄
0001̄ 0012̄ 0021̄ 0122̄ 0111̄ 0102̄
0002̄ 0011̄ 0022̄ 0121̄ 0112̄ 0101̄
000̄3 001̄0 00̄23 0120̄ 011̄3 01̄00

Recalling Section 9.5, this is clearly the reflected mixed-radix Gray code for radices (1, 2, 3, 4).
Therefore, we can use the method employed by Algorithm C to generate c1c2 . . . cn looplessly
and obtain a loopless imperative algorithm for plain changes.

We can avoid the calculation of the offset variable s in Algorithm E by keeping track of the
inverse permutations a′1a

′
2 . . . a′n and letting the values of c1c2 . . . cn count only downwards. Then

we have a more straightforward imperative algorithm:

ALGORITHM F (Plain changes with inverse permutations). This algorithm generates all per- 2

mutations of a given sequence a1a2 . . . an of n distinct elements and their corresponding inverse
permutations a′1a

′
2 . . . a′n such that a′k = j if and only if aj = k. We interchange adjacent pairs of

elements in each step and use an array c1c2 . . . cn to represent pairs of not necessarily adjacent
elements that are out of order, with 0 ≤ cj < j for 1 ≤ j ≤ n. An array of directions o1o2 . . . on

indicates how these cj change.

F1. (Initialize) Set aj ← a′j ← j, cj ← j − 1 and oj ← −1 for 1 ≤ j ≤ n. Also set c0 = −1.

F2. (Visit) Visit the permutation a1a2 . . . an and its inverse a′1 . . . a′n.

F3. (Find k) Set k ← n. Then, if ck = 0, set ck ← k− 1, ok ← −ok, k ← k− 1 and repeat until
ck 6= 0. Terminate if k = 0.

F4. (Change) Set ck ← ck−1, j ← a′k and i← j +ok. Then set t← ai, ai ← k, aj ← t, a′t ← j
and a′k ← i. Return to F2.

2Knuth (2005a) 103–104, based upon Ehrlich (1973b) 505–506.
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Figure 12.2. A graphical representation of plain changes.

It is also possible to generate these values of c1c2 . . . cn looplessly, therefore giving us another
loopless imperative algorithm for permutation generation.

While loopless versions of Algorithms E and F guarantee that each successive permutation
takes O(1) time, in terms of total running time they are slower than the original algorithms con-
taining loops. This is because the loops in these algorithms are used relatively infrequently, and
the gain in efficiency that would normally result from their removal is outweighed by the over-
head of maintaining additional arrays. In Algorithm E, for example, n−1 out of n permutations
are generated without using the loop defined in steps E4, E6 and E7.

12.2. Mixing and permutations

We use mix to define a function johnson which expresses the transitions between permutations 3

with adjacent pairs of elements interchanged:

johnson :: Int→ [Int]
johnson 1 = [ ]
johnson n = mix (bump 1 (johnson (n− 1))) [n− 1. . 1]

where
bump k [ ] = [ ]
bump k [a] = [a + k]
bump k (a : b : ns) = (a + k) : b : bump k ns

The function bump k adds k to every element in an even position in the sequence. We can define
our transitions as the indices j of each element a0a1 . . . an−1 that should be interchanged with its
adjacent element aj−1. Therefore, as shown in Figure 12.1, the transitions between permutations
of four elements are

3, 2, 1, 3, 1, 2, 3, 1, 3, 2, 1, 3, 1, 2, 3, 1, 3, 2, 1, 3, 1, 2, 3.

To express johnson in terms of mixall and take advantage the loopless functional algorithms
we have derived, we generalize it to a function code such that

johnson n = code (0,n)

This is defined by
code (k,n) = bump k (johnson n)

Using the simple identities

bump k (mix xs ys) = if even (length ys) then mix (bump k xs) (bump k ys)
else mix xs (bump k ys)

bump k (xs ++ y : ys) = if even (length xs) then bump k xs ++ bump k (y : ys)
else bump k xs ++ y : bump k ys

3Bird (2005b).
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provable by simple induction, we can derive a recursive definition of code:

code (k, 1) = [ ]
code (k,n) = if odd n then mix (code (k + 1,n− 1)) (down (k,n))

else mix (code (1,n− 1)) (down (k,n))

where
down (k,n) = bump k [n− 1,n− 2. . 1]

Now, assuming that
code = mixall ·map down · list

we can use the definitions of code and map and the identity

mix (mixall xss) xs = mixall (xss ++ [xs])

to obtain

code (k,n) = if odd n then (mixall ·map down) (list (k + 1,n− 1) ++ [(k,n)])
else (mixall ·map down) (list (1,n− 1) ++ [(k,n)])

It follows that we may define list recursively by

list (k, 1) = [ ]
list (k,n) = if odd n then list (k + 1,n− 1) ++ [(k,n)]

else list (1,n− 1) ++ [(k,n)]

We can improve this definition to reduce the number of steps from O(n2) to O(n) using the
prelude function zip with infinite lists:

list (k, 1) = [ ]
list (k,n) = if odd n then zip twoones [2. . n− 2] ++ [(k + 1,n− 1), (k,n)]

else zip twoones [2. . n− 2] ++ [(1, n− 1), (k,n)]
where twoones = 2 : 1 : twoones

If k = 0 then list (k,n) is the same in both odd and even cases. Therefore, we have

johnson = mixall ·map down · list′

where
list′ 1 = [ ]
list′ n = zip twoones [2. . n− 2] ++ [(1, n− 1), (0, n)]

where twoones = 2 : 1 : twoones

Applying the loopless version of mixall using forests from Chapter 6, a loopless form for johnson
follows:

johnson = unfoldr step · prolog

where

prolog = wrapQueue · fst · foldr tmix (empty , empty) ·map down · list′

We do not yet have a loopless functional algorithm since map down · list takes O(n) time under
strict evaluation.
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In Section 6.4, we derived an implementation of mixall that, subject to certain conditions, was
loopless and took as its argument a list generated by a loopless functional algorithm. Therefore,
to make progress, we will try to express down looplessly.

We consider types Direction and Instruction given by

data Direction = Down | DownSkip | Up | UpSkip

type Instruction = (Direction, Int, Int, Int)

It is then easy to derive the following loopless functional algorithms:

down = unfoldr step′ · fst · prolog ′

reverse · down = unfoldr step′ · snd · prolog ′

where

prolog ′ (k,n) = if even n then ((Down, k,n− 1, 1), (Up, k, 1, n− 1))
else ((Down, k,n− 1, 1), (UpSkip, k, 1, n− 1))

step′ (Down, k,m,n) = if m < n then Nothing
else Just (m + k, (DownSkip, k,m− 1,n))

step′ (DownSkip, k,m,n) = if m < n then Nothing
else Just (m, (Down, k,m− 1,n))

step′ (Up, k,m,n) = if m > n then Nothing
else Just (m + k, (UpSkip, k,m + 1,n))

step′ (UpSkip, k,m,n) = if m > n then Nothing
else Just (m, (Up, k,m + 1,n))

Substituting this new definition of down into johnson we have

johnson = mixall ·map (unfoldr step′ · fst · prolog ′) · list′

Then we define a function length′ by

length′ (k,n) = n− 1

when satisfies the condition

length′ = unfoldr step′ · prolog ′

Since we also we have step′ and prolog ′ such that

reverse · unfoldr step′ · fst · prolog ′ = unfoldr step′ · snd · prolog ′

it follows that we can use these functions with our generalized loopless functional algorithm

mixall ·map (unfoldr sp · fst · pg) = unfoldr (step sp) · prolog sp lg pg

to obtain a loopless functional algorithm for johnson:

johnson = unfoldr (step step′) · prolog step′ length′ prolog ′ · list′

The definitions of step and prolog are shown in Figure 12.5 at the end of this chapter.
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1234 2341 3412 4123 (1234)
2314 3142 1423 4231 (2314)
3124 1243 2431 4312 (3124) (1234)
2134 1342 3421 4213 (2134)
1324 3241 2413 4132 (1324)
3214 2143 1432 4321 (3214) (2134) (1234)

Figure 12.3. Permutations generated by prefix shifts.

12.3. Prefix shifts and star transpositions

Interchanging adjacent elements may be the simplest way to change from one permutation to the
next, but there are several other easily characterizable operations that can be used to generate
permutations. The first of these is the prefix shifting of elements to the left between each
successive permutation. This procedure is particularly efficient when permutations are kept in a
machine register instead of an array.

The following imperative algorithm is possibly the most straightforward for generating per-
mutations, especially in terms of minimality of program length:

ALGORITHM G (Permutation generation by prefix shifts). This algorithm generates all per- 4

mutations a1a2 . . . an of n distinct elements {x1,x2, . . . ,xn}, starting with x1x2 . . . xn and prefix
shifting elements to the left in each step.

G1. (Initialize) Set aj ← xj for 1 ≤ j ≤ n.

G2. (Visit) Visit the permutation a1 . . . an.

G3. (Prepare to shift) Set k ← n.

G4. (Shift) Replace a1a2 . . . ak by the prefix shift a2 . . . aka1. If ak 6= xk, return to G2.

G5. (Decrease k) Set k ← k − 1. Terminate if k = 1. Otherwise return to G4.

This algorithm considers permutations that can be obtained from each other by prefix shifts of
the whole configuration as being in some way related. These objects are said to have the same
‘circular ordering’. Then the problem of generating all permutations reduces to finding distinct
circular orderings. From an initial ordering of length k, we can find another circular ordering by
a prefix shift to the left of length k − 1. Repeating this shift a total of k − 1 times, we generate
k − 1 distinct circular orders. It follows that for each of these new orders, we can generate a
further k− 2 circular orders by prefix shifts of length k− 2. Continuing this idea, we eventually
generate all circular orderings, obtaining k actual permutations from each.

For example, if n = 4, the permutations 1234, 2341, 3412 and 4123 have the same circular
ordering. Prefix shifting the first three elements of 1234 leftwards, we have 2314, which has
the same circular ordering as 3142, 1423 and 4231. Continuing, we generate 3124 and related
elements from a prefix shift of the first three elements of 2314, but another prefix shift of the same
length gives us 1234 again. Therefore, we shift by two elements to obtain 1324 and permutations
with equivalent circular ordering. This is illustrated in Figure 12.3. Unvisited intermediate
permutations are indicated by parentheses.

A different approach to permutation generation is by ‘star transpositions’. These are the
interchange of the leftmost element a0 of a permutation a0a1 . . . akak+1 . . . an−1 with another

4Knuth (2005a) 56–57, based upon Langdon (1967).
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1̄2̄34 4̄21̄3 3̄4̄12 2̄43̄1
2̄13̄4 1̄2̄43 4̄31̄2 3̄4̄21
3̄1̄24 2̄14̄3 1̄3̄42 4̄32̄1
1̄32̄4 4̄1̄23 3̄14̄2 2̄3̄41
2̄3̄14 1̄42̄3 4̄1̄32 3̄24̄1
3̄214̄ 2̄413̄ 1̄432̄ 4̄231̄

Figure 12.4. Permutations generated by star transpositions.

element ak. This changes each permutation in a minimal way using only n− 1 different transpo-
sitions for permutations of length n. For example when n = 4, using the interchanges a0 ↔ a1,
a0 ↔ a2 and a0 ↔ a3, we obtain the configuration in Figure 12.4.

Star transpositions have an advantage over adjacent interchanges as we do not need to read
the value of a0 from memory since we know it from the previous transposition.

The following imperative algorithm generates all permutations by star transpositions:

ALGORITHM H (Permutation generation by star transpositions). This algorithm generates all 5

permutations of a given sequence a0a1 . . . an−1 of n distinct elements, exchanging the leftmost
element with another in each step. We use two arrays b0b1 . . . bn−1 and c1c2 . . . cn.

H1. (Initialize) Set bj ← j and cj+1 ← 0 for 0 ≤ j < n.

H2. (Visit) Visit the permutation a0 . . . an−1.

H3. (Find k) Set k ← 1. Then, if ck = k, set ck ← 0, l ← k + 1 and repeat until ck < k.
Terminate if k = n. Otherwise set ck ← ck + 1.

H4. (Swap) Exchange a0 ↔ abk
.

H5. (Flip) Set j ← 1 and k ← k − 1. If j < k, interchange bj ↔ bk, set j ← j + 1, k ← k − 1
and repeat until j ≥ k. Return to H2.

If the value of n is relatively small, we can calculate the indices of the elements to be transposed
at each step in advance.

5Knuth (2005a) 57–58, based upon a previously unpublished algorithm discovered by G. Ehrlich in 1987.
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data Rose a = Node a (Queue (Rose a))
data Delay a b = Hold a b (Queue (Delay a b),Queue (Delay a b))
data Direction = Down | DownSkip | Up | UpSkip
type Instruction = (Direction, Int, Int, Int)

johnson = unfoldr (step step′) · prolog step′ length′ prolog ′ · list′

list′ 1 = [ ]
list′ n = zip twoones [2. . n− 2] ++ [(1, n− 1), (0, n)]

where twoones = 2 : 1 : twoones

prolog sp lg pg = wrapQueue · fst · foldr (tmix sp) (empty , empty) · list lg pg

list lg pg xs = [(lg x, a,b) | x ← xs, (a,b)← [pg x]]

tmix sp (n, a,b) (ytq, qty)
= if even n then (fmix sp a (ytq, qty), fmix sp b (qty , ytq))

else (fmix sp a (ytq, qty), fmix sp b (ytq, qty))

fmix sp a (ytq, qty) = case sp a of
Nothing → ytq
Just (x,b) → insert ytq (Hold x b (ytq, qty))

prolog ′ (k,n) = if even n then ((Down, k,n− 1, 1), (Up, k, 1, n− 1))
else ((Down, k,n− 1, 1), (UpSkip, k, 1, n− 1))

length′ (k,n) = n− 1

wrapQueue xtq = consQueue xtq [ ]

consQueue xtq xtqs = if isEmpty xtq then xtqs
else xtq : xtqs

step sp [ ] = Nothing
step sp (xtq : xtqs) = Just (x, consQueue (fmix sp a (qty , ytq)) (consQueue ztq xtqs))

where (Hold x a (ytq, qty), ztq) = remove xtq

step′ (Down, k,m,n) = if m < n then Nothing
else Just (m + k, (DownSkip, k,m− 1,n))

step′ (DownSkip, k,m,n)
= if m < n then Nothing

else Just (m, (Down, k,m− 1,n))
step′ (Up, k,m,n) = if m > n then Nothing

else Just (m + k, (UpSkip, k,m + 1,n))
step′ (UpSkip, k,m,n)

= if m > n then Nothing
else Just (m, (Up, k,m + 1,n))

Figure 12.5. A loopless functional algorithm for johnson using forests.
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Chapter 13

Generating Combinations

Nature is an endless combination and repetition of a very few laws. She hums the old
well-known air through innumerable variations.

Ralph Waldo Emerson, ‘History’, Essays, First Series, 1841

A t-combination is a subset of size t taken from a given set of size n. This is equivalent to choosing
the n − t elements not selected. Therefore, we can also call these subsets (s, t)-combinations,
where

n = s + t.

We will represent (s, t)-combinations in two ways:

(i) As an index list of the elements ct . . . c2c1 that have been selected, where

n > ct > · · · > c2 > c1 ≥ 0.

(ii) As a bit string an . . . a2a1 where a 1 bit refers to a selected element and a 0 bit to an
unselected element. Clearly, there will be s bits set to 0 and t bits set to 1, so it follows
that

an + · · ·+ a1 = t.

13.1. Gray codes for combinations and the Liu-Tang algorithm

We can extract a Gray code for (s, t)-combinations from the binary reflected Gray code for n 1

bit numbers by deleting all those elements corresponding to subsets which do not have exactly
t elements. The bit strings that remain form a sequence of successive combinations that differ
by exactly one element. For example the bit strings a6a5a4a3a2a1 of a (3, 3)-combination are
shown in Figure 13.1(a). This list is cyclic, and we can find the Gray binary code for a (2, 3)-
combination by taking the first two columns of this array. The corresponding index list forms
c3c2c1 appear in Figure 13.1(b).

This arrangement is known as ‘revolving door combinations’ since we can consider the situa-
tion which is illustrated in Figure 13.2 for (10, 10)-combinations. An (s, t)-combination represents
two rooms that contain s and t people, respectively. Between the two rooms there is a revolving
door and whenever a person moves to the other room, someone from that room replaces them
in the opposite direction.

1Tang & Liu (1973) 176–177.

64



(a) Bit string form (b) Index list form

000̄11̄1 0110̄1̄0 11000̄1̄ 1010̄1̄0
00110̄1̄ 011̄100̄ 1100̄1̄0 101̄100̄
0011̄10̄ 01010̄1̄ 110̄1̄00 10010̄1̄
00̄101̄1 0101̄10̄ 11̄1000̄ 1001̄10̄
01100̄1̄ 0̄1001̄1 10100̄1̄ 1̄000̄11

32̄1 542̄ 651̄ 642̄
431̄ 54̄3 652̄ 643̄
43̄2 531̄ 653̄ 631̄
42̄1 53̄2 65̄4 63̄2
541̄ 52̄1 641̄ 6̄21

Figure 13.1. Revolving door combinations.

We have the following recursive definition for revolving door combinations:

Lst =


0s if t = 0
1t if s = 0
0L(s−1)t, 1LR

s(t−1) otherwise

Clearly, this takes the same form as the recursive definition of binary reflective Gray codes in
Section 9.1, except for an additional parameter.

THEOREM 13.1. The sequence Lst has the following properties:

(i) Successive bit strings differ by the interchange of one pair of bits.

(ii) The first element of Lst is 0s1t.

(iii) The last element of Lst is 10s1t−1 for st > 0.

Additionally, the transition between the last and first strings also satisfies the revolving door
constraint. The following sequences show the different cases that can occur and demonstrate
these properties:

s = 1 otherwise t = 1

0s1t 0s1

0111t−2
...

...
010s−111t−2 010s−1

1101t−2 110s−101t−2

...
... 100s−1

101t−1 10s1t−1

The imperative Liu-Tang algorithm visits the index list forms of all combinations in revolving
door order:

Figure 13.2. Two rooms separated by a revolving door.
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Figure 13.3. A graphical representation of revolving door combinations.

ALGORITHM I (Revolving door combinations). This algorithm generates list representations 2

of all (s, t)-combinations ct . . . c2c1 of n elements {0, 1, . . . ,n−1}, where n = s+ t and n > t > 1.
Lists with a common prefix occur consecutively.

I1. (Initialize) Set cj ← j − 1 for t ≥ j ≥ 1 Also set ct+1 ← n.

I2. (Visit) Visit the combination ct . . . c2c1.

I3. (Easy case?) If t is odd: If c1 + 1 < c2, set c1 ← c1 + 1 and return to I2, otherwise set
j ← 2 and go to I4. If t is even: If c1 > 0, set c1 ← c1 − 1 and return to I2, otherwise set
j ← 2 and go to I5.

I4. (Try to decrease cj) If ck ≥ j, set cj ← cj−1, cj−1 ← j − 2 and return to I2. Otherwise set
j ← j + 1.

I5. (Try to increase cj) If cj +1 < cj+1, set cj−1 ← cj , cj ← cj +1 and return to I2. Otherwise
set j ← j + 1 and go to I4 if k ≤ t.

A graphical representation of revolving door (5, 5)-combinations is displayed in Figure 13.3.

13.2. Combination generation by homogenous transitions

While the revolving door Gray code changes only one element of the combination at each step, it
must often change two of the indices of cj simultaneously to preserve the listing ct > · · · > c2 > c1.
This is because the recursive definition of Cst involves transitions of the form 110a0↔ 010a1 for
a ≥ 1. However, it is possible modify our definition so that only one index changes at each step.
A Gray code for combinations with this property is known as ‘homogeneous’, characterized by
having only transitions of the form 10a ↔ 0a1. This suggests that a suitable sequence would
begin with 0s1t and end with 1t0s. It follows that we may define a homogenous sequence of
combinations by

Kst =


ε if t = −1
0s if t = 0
1t if s = 0
0K(s−1)t, 10KR

(s−1)(t−1), 11Ks(t−2) otherwise

This relation results from only a small modification to the recursive definition of binary reflected
Gray codes.

THEOREM 13.2. The sequence Kst has the following properties:

(i) Successive bit strings differ by an interchange of the form 10a ↔ 0a1 for a ≥ 1.

(ii) The first element of Kst is 0s1t.

2Knuth (2005b) 8–10, based upon Payne & Ives (1979) and Liu & Tang (1973).
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(a) Homogeneous (b) Adjacent interchange

000̄1̄11 0101̄0̄1 1011̄00̄ 10̄001̄1
0010̄1̄1 010̄01̄1 10100̄1̄ 11000̄1̄
00110̄1̄ 01100̄1̄ 101̄0̄10 1100̄1̄0
00̄1̄110 0110̄1̄0 10011̄0̄ 110̄1̄00
01011̄0̄ 0̄1̄1100 1001̄0̄1 111000

000̄1̄11 01̄0̄101 10̄1̄010 0110̄1̄0
00̄1̄011 00110̄1̄ 11001̄0̄ 0̄1̄1100
0̄1̄0011 00̄1̄110 11000̄1̄ 10̄1̄100
1000̄1̄1 0̄1̄0110 1̄0̄1001 110̄1̄00
1̄0̄0101 100̄1̄10 01100̄1̄ 111000

Figure 13.4. Homogeneous and adjacent interchange combinations.

(iii) The last element of Kst is 1t0s.

In this case, the last and first strings do not share the properties of successive strings and so do
not differ by a homogeneous transition. The properties that Kst does possess, are illustrated by
the following sequence for n > t > 1:

00s−1111t−2

...
0111t−20s−1

 0K(s−1)t

1011t−20s−1

...
100s−111t−2

 10KR
(s−1)(t−1)

110s−101t−2

...
111t−200s−1

 11Ks(t−2)

Therefore, for a bit string indexed an . . . a2a1, the change at the first interface between subse-
quences interchanges the bits an and an−1, while at the second interface the interchanges are
between the bits an−1 and at−1. The homogeneous Gray code for (3, 3)-combinations is shown
in Figure 13.4(a), while a graphical illustration of (5, 5) appears in Figure 13.5.

We can also generate Gray codes for combinations in which each step causes an index cj to
change by at most 2. This corresponds to the transitions 01↔ 10 or 001↔ 100.

Unfortunately, it is not possible in general to limit our transitions further to only allow
adjacent interchanges and generate all combinations in an analogous way to the Johnson-Trotter
algorithm for permutations in Chapter 12:

THEOREM 13.3. The generation of all (s, t)-combinations as+t−1 . . . a1a0 by adjacent inter-
changes 01↔ 10 is possible if and only if s ≤ 1 or t ≤ 1 or st is odd.

For example, the following listing of (3, 3)-combinations in Figure 13.4(b) is possible. A visual-
ization of (5, 5)-combinations is shown in Figure 13.6

In the non-trivial cases when st is not odd, problems with the parities of the bit strings
prevent generation by adjacent interchanges. All current imperative algorithms to generate

Figure 13.5. A graphical representation of homogeneous combinations.
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Figure 13.6. A graphical representation of adjacent interchange combinations.

combinations with this minimal change property are difficult to implement efficiently, for example
using techniques such recursive coroutines. 3

13.3. Combination generation by prefix shifts

In Section 12.3, we saw an algorithm for generating all permutations using prefix shifts. It is
also possible to generate all combinations in bit string form using this method. Consider the
following recursive definition:

W ′
st = 1t0s, Wst

where

Wst =

{
ε if s = 0 or t = 0
W(s−1)t0, Ws(t−1)1, 1t−10s1 otherwise

The order of elements produced by this relation is known as ‘cool-lex’. We have the following
result:

THEOREM 13.4. The sequence Wst has the following properties:

(i) Each bit string of an (s, t)-combination appears in Wst exactly once, except 1t0s.

(ii) Successive bit strings differ by a prefix shift of one position to the right.

(iii) Successive bit strings differ by the interchange of one or two pairs of bits.

(iv) The first element of Wst is 01t0s−1.

(v) The last element of Wst is 1t−10s1.

The sequence Wst contains each (s, t)-combination exactly once except 1t0s because W(s−1)t0
is a sequence of all combinations that end with a 0 bit, except for 1t0s−10, while Ws(t−1)1 is a
sequence of all combinations that end with a 1 bit, except 1t−10s1 which is, of course, appended
to the end of the sequence.

To show the other properties, we just need to examine the interfaces between the three
subsequences of Wst. In the sequences below, the general case is shown twice, illustrating prefix
shifts on the left and exchanges of bits on the right.

s = 1 otherwise t = 1

011t−210s−20 011t−210s−20 010s−20
...

...
...

11t−200s−210 1̄1t−20̄0s−21̄0̄ 0s−2010
011t−21 011t−200s−21 01t−210s−201

...
...

...
1t−2011 1t−200s−2011 1t−20̄00s−21̄1
11t−201 11t−200s−201 1t−2100s−201 00s−201

3Eades et al. (1984).
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111000 101010 011001 010011
011100 010110 101001 001011
101100 001110 010101 000111
110100 100110 001101 100011
011010 110010 100101 110001

Figure 13.7. Combinations in cool-lex order.

From this, it is easy to see that at the interfaces between the subsequences, the bit strings differ
by a prefix shift of all n positions. Moreover, two bits change between strings at the first interface
while just one bit changes at the second.

Two other observations about cool-lex order follow from these properties. Since the last
string of Wst is equal to the complement of the reverse of the first string of Wts, we could define
cool-lex order in other ways. We also have an easy way to generate successive algorithms by
identifying the shortest prefix ending in 010 or 011 and then shifting it by one position to right.
If no such prefix exists then the whole string is shifted. Formally, a loopless imperative algorithm
for generating combinations is as follows:

ALGORITHM J (Combination generation by prefix shifts). This loopless algorithm generates 4

binary string representations of all (s, t)-combinations an . . . a2a1, where n > t > 0, prefix shifting
elements to the right in each step.

J1. (Initialize) Set n ← s + t and aj ← 0 for 1 ≤ j ≤ t, and aj ← 1 for s < j ≤ n. Also set
j ← k ← s + 1.

J2. (Visit) Visit the combination an . . . a2a1.

J3. (Zero out aj) Set aj ← 0 and j ← j − 1.

J4. (Easy case?) If aj = 1, set ak ← 1, k ← k − 1 and return to J2.

J5. (Wrap around) Terminate if j = 0. Otherwise set aj ← 1. Then if k < n, set ak ← 1,
an ← 0, j ← n− 1, k ← n and return to J2.

All (3, 3)-combinations in cool-lex order are shown in Figure 13.7. A graphical illustration of
(5, 5)-combinations appears in Figure 13.8.

Clearly, we can consider the transitions between combinations to be a prefix shift of length
k. A function coollex′ for these transitions follows almost directly from the recursive definition:

coollex′ :: [Int]→ [Int]→ [Int]
coollex′ s t = (s + t) : coollex s t

where
coollex 1 1 = [ ]
coollex 1 t = coollex 1 (t − 1) ++ [t + 1]
coollex s 1 = coollex (s − 1) 1 ++ [s + 1]
coollex s t = coollex (s − 1) t ++ [s + t] ++ coollex s (t − 1) ++ [s + t]

This gives the following transitions for the sequence of (3, 3)-combinations in Figure 13.7:

6, 3, 4, 5, 3, 4, 3, 4, 5, 6, 3, 4, 3, 4, 5, 3, 4, 5, 6

4Ruskey & Williams (2005) and Knuth (2005b) 97–98.

69



Figure 13.8. A graphical representation of combinations in cool-lex order.

These are not unique. For example, the transition from 11100 to 011100 could be achieved with
prefix shifts of lengths 4, 5 or 6. However, those generated by coollex′ correspond to choosing
the shortest prefix ending in 010 or 011, or the entire bit string if neither of these prefixes exist.
This is always possible. The concatenation of the singleton lists [t + 1], [s + 1] and [s + t] in the
definition follows because we can see from the properties of cool-lex order that in each case the
penultimate strings of Wst, W1t and Ws1 only contain the substrings 010 and 011 as their final
three elements.
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