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ABSTRACT

JAMIE R. SNAPE: Smooth and Collision-Free Navigation for Multiple Mobile Robots and Video
Game Characters

(Under the direction of Dinesh Manocha)

The navigation of multiple mobile robots or virtual agents through environments containing
static and dynamic obstacles to specified goal locations is an important problem in mobile robotics,
many video games, and simulated environments. Moreover, technological advances in mobile robot
hardware and video games consoles have allowed increasing numbers of mobile robots or virtual
agents to navigate shared environments simultaneously. However, coordinating the navigation of large
groups of mobile robots or virtual agents remains a difficult task. Kinematic and dynamic constraints
and the effects of sensor and actuator uncertainty exaggerate the challenge of navigating multiple
physical mobile robots, and video games players demand plausible motion and an ever increasing
visual fidelity of virtual agents without sacrificing frame rate.

We present new methods for navigating multiple mobile robots or virtual agents through
shared environments, each using formulations based on velocity obstacles. These include algorithms
that allow navigation through environments in two-dimensional or three-dimensional workspaces
containing both static and dynamic obstacles without collisions or oscillations. Each mobile robot or
virtual agent senses its surroundings and acts independently, without central coordination or inter-
communicationwith its neighbors, implicitly assuming the neighbors use the same navigation strategy
based on the notion of reciprocity. We use the position, velocity, and physical extent of neighboring
mobile robots or virtual agents to compute their future trajectories to avoid collisions locally and show
that, in principle, it is possible to theoretically guarantee that themotion of eachmobile robot or virtual
agent is smooth. Moreover, we demonstrate direct, collision-free, and oscillation-free navigation in
experiments using physical iRobot Create mobile robots, simulations of multiple differential-drive
robots or simple-airplanes, and video games levels containing hundreds of virtual agents.
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Chapter 

INTRODUCTION

1.1 Motivation

Mobile robots are becoming increasingly common in everyday life. Applications have been as
diverse as inspecting walls (Longo and Muscato, ), warehousing (Fiorini and Botturi, ), and
acting as tour guides (Philippsen and Siegwart, ). Numerous mobile robots, such as unmanned
aerial vehicles and autonomous underwater vehicles, have been deployed in military applications
(Cheng, Kumar, Arkin, et al., ). Terrestrial mobile robots, moving in the two-dimensional
workspace, often have differential-drive constraints; a simple drive mechanism that consists of two
independently actuated drive wheels mounted on a common axis. From vacuum cleaners (Jones,Mack,
Nugent, et al., ) to wheelchairs (Prassler, Scholz, and Fiorini, ), most mobile robots for do-
mestic applications have differential-drive constraints. Aerial mobile robots, in the three-dimensional
workspace, are also becomingmore widely used. In addition to their deployment by the military, these
robots, which are often propeller-driven with fixed wings, and may be as large as light aircraft, have
seen civil use assisting humans in the localization of wildfires (Casbeer, Kingston, Beard, et al., ),
as well as patrolling national borders (Girard, Howell, and Hedrick, ).

Mobile robots are beginning to be used as parts of a distributed system of multiple robots.
Groups of coordinated mobile robots may be used for surveillance, environmental monitoring, and
search and rescue (Michael, Fink, and Kumar, ). As their cost has decreased, multiple autonomous
airplanes and unmanned aerial vehicles have been used for tracking dynamic targets or providing
three-dimensional coverage (Cheng, Kumar, Arkin, et al., ; Grzonka, Grisetti, and Burgard, ).
When multiple mobile robots share an environment, it is necessary to develop methods to compute
collision-free paths for each of these robots with respect to other robots and dynamic and static
obstacles. Moreover, the robot should move smoothly, without oscillations in velocity (Van den Berg,
Lin, andManocha, ). Smoothness is important for mobile robots since their motionmust account
for the physical limits of their actuators and other safety issues.

The same techniques are applicable to video games containing many virtual agents. Pathfinding
is an important component of such games, and improved hardware, in particular the utilization of
multi-core architectures in recent computers and consoles, has made available the computational
resources to simulate large numbers of virtual agents with improved visual fidelity (Reynolds, ).
As a result, there is an ever-increasing demand for effective and efficient techniques to generate
plausible motion for such groups of virtual agents automatically.



1.2 Global Path Planning in Static Environments

The path planning problem for a single mobile robot or virtual agent in an environment
containing static obstacles is to compute a path through the environment, from a given starting
point to a given goal point, such that the mobile robot or virtual agent is never in collision with a
static obstacle, that respects any additional constraints imposed on the motion of the mobile robot or
virtual agent due, for instance, to its kinematics. A planning algorithm is said to be “complete” if it
returns a path if one exists and returns that no such path exists if it does not. There is a wide variety
of approaches to the path planning of a single mobile robot or virtual agent, complete or otherwise,
but the most prevalent are, broadly, cell decomposition, potential fields, and roadmaps.

Cell Decomposition Global Planners. These algorithms divide the environment into cells such that a
path always exists between points within the same cell (Brooks and Lozano-Pérez, ; Schwartz and
Sharir, ). A connectivity graph between cells is generated, and a graph search, such as A* (Hart,
Nilsson, and Raphael, ), is performed to compute a sequence of cells that will lead the mobile
robot or virtual agent from the cell containing the starting point to the cell containing the goal point.
This decomposition may take the form of a navigation mesh (Snook, ) or corridor map (Geraerts,
Kamphuis, Karamouzas, et al., ), which are popular methods for path planning in video games.

Potential Field Global Planners. These algorithms direct the mobile robot or virtual agent using
potential functions (Khatib, ) that are defined over the environment. The potential functions are
usually the sum of an attractive potential at the goal point and repulsive potentials at each obstacle in
the environment. Often the potential function can be sampled locally rather than being precomputed
for the whole of the environment. It follows that potential field planners often have low computation
costs, but their disadvantage is that the mobile robot or virtual agent may reach a local minimum in
the potential field and may need to resort to a random walk, or similar technique, to escape that point.

Roadmap Global Planners. These algorithms represent the connectivity of discrete points in the
environment of the mobile robot or virtual agent as a roadmap (Canny, ; Lozano-Pérez and
Wesley, ; Ó’Dúnlaing and Yap, ). Points in the environment are sampled, and the samples
between which a collision-free path exists are connected. A graph search then calculates the sequence
of roadmap nodes that must be traversed to move from the starting point to the goal point. Popular
approaches that use random sampling of points include the probabilistic roadmap method (Amato
andWu, ; Kavraki, Švestka, Latombe, et al., ) and rapidly-exploring random trees (LaValle
and Kuffner, ).

1.3 Global Path Planning in Shared Environments

Formultiple mobile robots or virtual agents, the path planning problem is expanded to compute
paths from the starting point to the goal point for every mobile robot or virtual agent sharing an





environment such that no mobile robot or virtual agent is in collision with another mobile robot or
virtual agent or a static obstacle at any time. Approaches to planning paths of multiple mobile robots
or virtual agents are often categorized as either “centralized” or “decoupled,” although there are hybrid
approaches that combine some elements of both centralized and decoupled planners, and may add
improved scalability to a centralized planner or completeness to a decoupled planner.

Centralized Global Planners. These algorithms compute a single path in a composite workspace
in a higher dimension, effectively treating the mobile robots or virtual agents as a single, composite
mobile robot or virtual agent. The approaches commonly used for the planning of a single mobile
robot or virtual agent can then be directly applied to the planning of multiple mobile robots or virtual
agents. It follows that centralized planners may be complete, yet the resulting, composite workspace
may be of such high dimension as to make their use computationally impractical.

Decoupled Global Planners. These algorithms compute paths for each robot individually and
independently, and then perform a velocity-tuning step or some coordination scheme to ensure
that no collisions occur along each path. Decoupled planners are not, in general, complete, but they
are faster, as planning in the individual workspaces of each mobile robot or virtual agent is usually
easier. Prioritized planners plan for each mobile robot or virtual agent in some order of priority while
ensuring that each mobile robot or virtual agent does not collide with mobile robots or virtual agents
for which paths have previously been planned.

1.4 Local Collision Avoidance in Dynamic Environments

Instead of considering the global environment of eachmobile robot or virtual agent and forming
a complete path from the starting point to the goal point in the environment, local collision avoidance
computes a trajectory for each mobile robot or virtual agent based on local observations of a dynamic
environment such that the mobile robot or virtual agent is not in collision with other mobile robots or
virtual agents and obstacles within some short, future window of time. The trajectories of the mobile
robots or virtual agents are updated repeatedly as they progress through the environment. Early work
was termed the “asteroid avoidance problem” (Reif and Sharir, ). Collision avoidance approaches
are particularly well suited to navigating multiple mobile robots or virtual agents since the mobile
robots or virtual agents must react to the unpredictable actions of other mobile robots or virtual agents
and dynamic obstacles. Their computational costs are also often much lower than those of traditional
path planners. However, due to their local nature, these planners are not complete. Many approaches
to collision avoidance have been proposed, but the most popular are force-based and velocity-based.

Force-based Local Collision Avoidance. In video games and simulated environments, the prevalent
approach has been to model virtual agents as particle systems (Helbing and Molnár, ) with each
particle applying a force on nearby particles. The laws of physics are used to compute forces on and
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the motion of the particles along with a set of specified behaviors that influence properties of the
system, such as separation, alignment, and cohesion of the virtual agents as particles (Reynolds, ).

Velocity-based Local Collision Avoidance. Popularized in robotics (Van den Berg, Lin, andManocha,
; Chakravarthy and Ghose, ; Fiorini and Shiller, ), thesemethods use the current position
and velocity of each mobile robot or virtual agent to estimate its future trajectory for some short
window of time and compute a new velocity that will be free of collisions over some short time interval.
Often, the new velocity for eachmobile robot or virtual agentmay be computed independently without
explicit communication, allowing for distributed systems of mobile robots or the parallelization of
simulations of virtual agents on modern multi-core architectures.

1.5 Kinematic Constraints

Mobile robots and some virtual agents have kinematic constraints on their motion. Some of the
earliest work in robotics concerned optimal paths for mobile robots with the kinematic constraints
of a simplified car (Dubins, ). Due to their widespread applicability to physical robots, much
research has focused on mobile robots with car-like constraints or those of a differential-drive robot.

Simple Car Kinematic Constraints. The control inputs of a simple car (Latombe, ; Laumond,
Sekhavat, and Lamiraux, ; LaValle, ) are its varying speed and steering angle. Simple cars
have four wheels that are attached to two axles separated by some nonzero, fixed wheelbase. The
two wheels that are attached to the rear axle of a simple car are its drive wheels, and both wheels are
always driven at the same speed. The front axle and its two wheels may be turned by some bounded
steering angle. The motion of a simple car in the two-dimensional workspace is constrained by its
speed, steering angle, and wheelbase. Aerial robots in the three-dimensional workspace have been
modeled as simple cars with varying altitude (Chitsaz and LaValle, ).

Differential-Drive Kinematic Constraints. The individual wheel speeds are the control inputs of a
differential-drive robot. Differential-drive robots have two fixed drive wheels, separated by a nonzero,
fixed wheel track, that may be driven independently at different speeds. A differential-drive robot
turns by varying the differential speed of its wheels. If the right wheel is driven at a greater speed than
the left, a differential-drive robot will turn left, and vice versa. The motion of a differential-drive robot
in the two-dimensional workspace is constrained by its two wheel speeds and its wheel track. The
center of a differential-drive robot can follow any continuous path within the environment (LaValle,
), but not instantaneously since it must spin to reach a direction perpendicular to the direction
of its wheels.

1.6 Thesis Statement and Contributions

Our thesis statement is as follows.
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Multiple mobile robots or virtual agents with kinematic and dynamic constraints may
navigate through shared environments in two-dimensional or three-dimensional workspaces
containing static and dynamic obstacles without collisions or oscillations andwithout central
coordination using formulations based on velocity obstacles.

In the remainder of this dissertation, we make the following main contributions in support of
the thesis statement.

Independent Navigation of Multiple Mobile Robots or Virtual Agents with Hybrid Reciprocal Ve-
locity Obstacles. In Chapter , we present the “hybrid reciprocal velocity obstacle” for oscillation-free
navigation of multiple mobile robots or virtual agents in the two-dimensional workspace. Eachmobile
robot or virtual agent senses its surroundings and acts independently without central coordination
or communication with other robots or virtual agents. Our approach uses both the current position
and the velocity of other mobile robots or virtual agents to compute their future trajectories to avoid
collisions locally. Our approach is reciprocal (Van den Berg, Lin, and Manocha, ), avoiding
oscillations in velocity by explicitly taking into account that the other mobile robots or virtual agents
in the environment equally sense their surroundings and change their trajectories accordingly. We
apply hybrid reciprocal velocity obstacles to multiple iRobot Create mobile robots and virtual agents
and demonstrate direct and oscillation-free navigation even in the presence of dynamic or static
obstacles.

Smooth Navigation of Multiple Robots under Differential-Drive Constraints. In Chapter , we
present a method for the smooth navigation of multiple independent differential-drive robots in the
two-dimensional workspace. We adapt the optimal reciprocal collision avoidance formulation (Van
den Berg, Guy, Lin, et al., ) by enlarging the “effective radius” bywhich it bounds a differential-drive
robot in a precise way to provide a reference point, the “effective center,” that can be maneuvered
in any direction instantaneously. Our approach theoretically guarantees both the smoothness of the
trajectories of the differential-drive robots and paths that are locally free of collisions. We provide
proofs of these guarantees, including, to the best of our knowledge, the first proof of smoothness for
a reciprocal collision avoidance scheme for mobile robots or virtual agents. We show the effectiveness
of our approach in experiments with multiple iRobot Create differential-drive robots, demonstrating
visibly smooth motion.

Navigating Multiple Simple-Airplanes in Three-Dimensional Workspace. In Chapter , we present
optimal reciprocal collision avoidance with “variable reciprocity” for navigating multiple simple-
airplanes in the three-dimensional workspace. Our approach extends the kinematic and dynamic
constraints of a simple car (Latombe, ; Laumond, Sekhavat, and Lamiraux, ; LaValle, )
to a model, which we name the “simple-airplane,” that has constraints on both speed, steering angle,
and changes in altitude. We use a reciprocal collision avoidance method that computes the trajectory
of each simple-airplane independently without collisions with other simple-airplanes or dynamic
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obstacles and without oscillations in velocity. Moreover, we use a sampling-based scheme to ensure
the kinematic and dynamic constraints of each simple-airplane are satisfied. Generalizing the notion
of reciprocity, we extend previous approaches (Van den Berg, Guy, Lin, et al., ; Van den Berg, Lin,
and Manocha, ) by explicitly considering the recent motion of nearby simple-airplanes to vary
the level of reciprocity between pairs of simple-airplanes dynamically so that a simple-airplane that
is observed to be more constrained needs to take less responsibility for avoiding collisions. We test
our approach in experiments with simulated simple-airplanes and dynamic obstacles, demonstrating
oscillation-free trajectories that satisfy the kinematic and dynamic constraints of each simple-airplane.

Goal Velocity Obstacles for Spatial Navigation of Multiple Virtual Agents. In Chapter , we present
the “goal velocity obstacle” for the spatial navigation of multiple virtual agents, such as are found in
video games and simulated environments, to planar goal regions in the two-dimensional workspace.
Our approach uses the notion of velocity obstacles (Fiorini and Shiller, ) not only to compute
collision-avoiding velocities with respect to other virtual agents, but also to specify velocities that
will direct a virtual agent toward its spatial goal region. The goal velocity obstacle provides a unified
formulation that allows for goals specified as points, line segments, and bounded, planar regions
in two dimensions that may be static or moving. A virtual agent may have multiple goal regions
without requiring an explicit goal allocation algorithm that would choose a particular goal region to
navigate toward in advance. We have applied our approach to experiments with hundreds of virtual
agents, demonstrating shorter path lengths and fewer collisions with only microseconds of additional
computation, per virtual agent, per time step, than when using velocity-based methods that optimize
on a single, preferred velocity toward the goal of each virtual agent.
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Chapter 

INDEPENDENT NAVIGATION OF MULTIPLE MOBILE ROBOTS OR VIRTUAL
AGENTSWITH HYBRID RECIPROCAL VELOCITY OBSTACLES

2.1 Introduction and Motivation

Many recent works have considered the problem of navigating a mobile robot or virtual agent
in an environment composed of dynamic obstacles (Chakravarthy and Ghose, ; Fiorini and
Shiller, ; Fox, Burgard, andThrun, ; Hsu, Kindel, Latombe, et al., ; Petti and Fraichard,
). Some of the simplest approaches predict where the dynamic obstacles may be in the future
by extrapolating their current velocities and let the mobile robot or virtual agent avoid collisions
accordingly. However, such techniques are not sufficient when a robot encounters other robots because
treating the other robots as dynamic obstacles overlooks the reciprocity between robots. In other
words, the other robots are not passive, but are actively trying to avoid collisions. Therefore, the future
trajectories of other robots cannot be estimated by simply extrapolating their current velocities since
doing so would inherently cause undesirable oscillations in their trajectories (Van den Berg, Lin, and
Manocha, ).

We present the “hybrid reciprocal velocity obstacle” for navigating multiple mobile robots or
virtual agents that explicitly considers the reciprocity between the mobile robots or virtual agents.
Informally, reciprocity lets a robot take half of the responsibility for avoiding collisions with another
robot and assumes that the other robot takes responsibility for the other half. In an environment
containing multiple robots, this concept extends to every pair of robots. Each robot executes an
independent feedback loop in which it chooses its new velocity based on observations of the current
positions and velocities of the other robots in proximity. The robots do not communicate with each
other, but implicitly assume that the other robots use the same navigation strategy based on reciprocity.
Our overall approach can also deal with both static and dynamic obstacles using a navigation roadmap.

The hybrid reciprocal velocity obstacle is an extension of the reciprocal velocity obstacle (Van
den Berg, Lin, and Manocha, ) that was introduced to address similar issues in multiagent
simulation. However, the reciprocal velocity obstacle formulation has some limitations, particularly
that it frequently causes virtual agents to end up in a “reciprocal dance” (Feurtey, ) as they cannot
reach agreement on which side to pass each other. To overcome this drawback, the hybrid reciprocal
velocity obstacle enlarges the reciprocal velocity obstacle on the side that a robot should not pass
by substituting the reciprocal velocity obstacle edge with the edge of a velocity obstacle (Fiorini and
Shiller, ). Consequently, if a robot attempts to pass on the wrong side of another robot, then the



robot has to give full priority to the other robot. If the robot chooses the correct side, then it can
assume the cooperation of the other robot and retains equal priority.

We have implemented and applied our approach to a set of iRobot Create mobile robots moving
in an indoor environment using Bluetooth wireless remote control and centralized sensing from an
overhead digital video camera. Our experiments show that our approach achieves oscillation-free
navigation in an environment containing multiple mobile robots and dynamic obstacles even with
some uncertainty in position and velocity. We also demonstrate the ability to handle static obstacles
and the low computational requirements and scalability of the hybrid reciprocal velocity obstacle in
simulations of multiple virtual agents.

2.2 Prior Work

Reactive navigation differs from traditional global path planning approaches, e.g., Hsu, Kindel,
Latombe, et al. (); Kavraki, Švestka, Latombe, et al. (); LaValle and Kuffner (), in that
rather than planning complete paths to their goals, robots react only to their local environment at any
moment in time. Well-known reactive formulations include the dynamic window approach (Fox, Bur-
gard, andThrun, ) and inevitable collision states (Petti and Fraichard, ), in addition to velocity
obstacles (Fiorini and Shiller, ). Some approaches use a number of predefined discrete behaviors
(Pallottino, Scordio, Bicchi, et al., ) or parameter space transformations (Blanco, González, and
Fernández-Madrigal, ). Multiple robots may cooperate implicitly by broadcasting their future
intentions (Pedduri, Krishna, and Hexmoor, ) or with limited bidirectional communication
(Bekris, Tsianos, and Kavraki, ).

A particularly successful concept for reactive navigation is the velocity obstacle (Fiorini and
Shiller, ; Large, Sckhavat, Shiller, et al., ) or collision cone (Chakravarthy and Ghose, ).
Velocity obstacles have been used in practice for applications such as warning drivers of impending
highway collisions (Shiller, Prasanna, and Salinger, ), navigating a robotic wheelchair through
a crowded station (Prassler, Scholz, and Fiorini, ), and directing an autonomous robot within a
pharmaceuticals plant (Fiorini and Botturi, ).

Several variations of velocity obstacles have been proposed for systems of multiple robots.
Generally, these have attempted to incorporate the reactive behavior of the other robots in the
environment. Formulations such as common velocity obstacles (Abe and Matsuo, ), recursive
probabilistic velocity obstacles (Fulgenzi, Spalanzani, and Laugier, ; Kluge and Prassler, ), and
reciprocal velocity obstacles (Van den Berg, Lin, and Manocha, ) use various means to handle
reciprocity, but all have shortcomings. Specifically, the common velocity obstacle and reciprocal
velocity obstacle are limited to dealing with only two robots, and the recursive probabilistic velocity
obstacle may fail to converge.

Approaches such as Van den Berg, Guy, Lin, et al. (); Gal, Shiller, and Rimon (); Guy,
Chhugani, Kim, et al. (); Tychonievich, Zaret, Mantegna, et al. () truncate the collision cone
to consider only collisions that will occur within a finite window of time.
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2.3 Problem Description and Notation

Weuse the following problemdescription and notation in this chapter and, with small variations,
the rest of this dissertation.

Let there be a nonempty set ℛ of disc-shaped robots or disc-bounded virtual agents sharing an
environment in the two-dimensional workspace ℝ2 and the two-dimensional velocity space, which
we denote𝕍2. The environment may also contain a set𝒪 of dynamic, i.e., moving, obstacles and static
obstacles that we assume can be identified by each robot or virtual agent as not actively adapting their
velocity to avoid collisions.

Each robot or virtual agent 𝐴 ∈ ℛ has a fixed radius 𝑟𝐴 ∈ ℝ
+, a current position 𝑝𝐴 ∈ ℝ

2, and
a current velocity 𝑣𝐴 ∈ 𝕍

2, all of which are known to itself and may be measured by the other robots
or virtual agents in the environment. Let each robot or virtual agent 𝐴 ∈ ℛ also have a point goal
located at 𝑝goal𝐴 ∈ ℝ

2 and a preferred speed 𝑣pref𝐴 ∈ 𝕍
+ that are unknown to the other robots or virtual

agents. The point goal may simply be a fixed point chosen in the workspace ℝ2 or the result of some
external criteria, such as the output of a global planning or scheduling algorithm.The preferred speed
is the speed that a robot or virtual agent would take in the absence of other robots or virtual agents
and obstacles, and may be similarly chosen manually or by some external algorithm. The robots may
have kinematic and dynamic constraints on their motion in the workspace ℝ2.

The objective of each robot or virtual agent 𝐴 ∈ ℛ is to choose a new velocity 𝑣new𝐴 ∈ 𝕍
2 at

each time step independently and simultaneously to compute a trajectory toward its goal without
collisions with any other robots or virtual agents and obstacles and with as few oscillations as possible.
The robots or virtual agents should not communicate with each other or perform any sort of central
coordination, but may assume that the other robots or virtual agents are using the same strategy to
choose new velocities. We deem that a robot or virtual agent 𝐴 ∈ ℛ has reached its point goal if
‖𝑝𝐴 − 𝑝

goal
𝐴 ‖2 ≤ 𝑑, for some threshold 𝑑 ∈ ℝ+.

2.4 Hybrid Reciprocal Velocity Obstacles

In this section, we describe how robots avoid collisions with each other using velocity obstacles.
We review the concepts of velocity obstacles and reciprocal velocity obstacles, and then introduce our
formulation of hybrid reciprocal velocity obstacles that we use for navigating multiple mobile robots
or virtual agents.

2.4.1 Velocity Obstacles

The velocity obstacle (Fiorini and Shiller, ) of a robot induced by a dynamic obstacle is
the set of all velocities of the dynamic obstacle in the velocity space𝕍2 that will result in a collision
between the robot and the dynamic obstacle in the workspace ℝ2 at some future moment in time,
assuming that the dynamic obstacle maintains a constant velocity.
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Figure .: (a) Two disc-shaped robots 𝐴 and 𝐵 with positions 𝑝𝐴 and 𝑝𝐵, velocities 𝑣𝐴 and 𝑣𝐵, and radii 𝑟𝐴
and 𝑟𝐵, respectively, in the two-dimensional workspace. (b) The velocity obstacle 𝑉𝑂𝐴|𝐵 of robot 𝐴 induced by
robot 𝐵 in the two-dimensional velocity space.

Definition .. Let 𝐴 ⊕ 𝐵 ⊆ ℝ2 denote the Minkowski sum of robot 𝐴 and dynamic obstacle 𝐵, let
−𝐴 ⊆ ℝ2 denote robot 𝐴 reflected in its reference point, and let 𝜆(𝑝, 𝑣) = {𝑝 + 𝑡𝑣 | 𝑡 > 0} ⊆ ℝ2 be
a ray starting at point 𝑝 with direction 𝑣. Then, the velocity obstacle of robot 𝐴 induced by dynamic
obstacle 𝐵 is defined as

𝑉𝑂𝐴|𝐵 ∶= {𝑣 | 𝜆(𝑝𝐴, 𝑣 − 𝑣𝐵) ∩ 𝐵 ⊕ −𝐴 ≠ ∅} ⊆ 𝕍
2.

A geometric interpretation of the region 𝑉𝑂𝐴|𝐵 appears in Figure .(b). Note that the apex of the
velocity obstacle is at 𝑣𝐵.

Definition .. If robot 𝐴 and dynamic obstacle 𝐵 are both disc-shaped with radii 𝑟𝐴 and 𝑟𝐵, respec-
tively, then Definition . simplifies to

𝑉𝑂𝐴|𝐵 ∶= {𝑣 | ∃𝑡 > 0 ∶∶ 𝑡(𝑣 − 𝑣𝐵) ∈ D(𝑝𝐵 − 𝑝𝐴, 𝑟𝐴 + 𝑟𝐵)} ⊆ 𝕍
2,

where D(𝑝, 𝑟) ⊆ ℝ2 is an open disc of radius 𝑟 ∈ ℝ+ centered at 𝑝 ∈ ℝ.

It follows that if robot 𝐴 chooses a velocity inside 𝑉𝑂𝐴|𝐵, then robot 𝐴 and dynamic obstacle 𝐵
will potentially collide at some point in time. If the velocity chosen is outside 𝑉𝑂𝐴|𝐵, then a collision
will not occur.

We note that the velocity obstacle is symmetric, i.e., 𝑣𝐴 is inside 𝑉𝑂𝐴|𝐵 if and only if 𝑣𝐵 is
inside 𝑉𝑂𝐵|𝐴, and translation invariant, i.e., 𝑣𝐴 is inside 𝑉𝑂𝐴|𝐵(𝑣𝐵 = 𝑣) if and only if 𝑣𝐴 + 𝑢 is inside
𝑉𝑂𝐴|𝐵(𝑣𝐵 = 𝑣 + 𝑢). By the convexity of half-planes, the velocity obstacle is also convex, i.e., if 𝑣
and 𝑢 are in the left half-plane extending from the left edge of 𝑉𝑂𝐴|𝐵, then (1 − 𝑡)𝑣 + 𝑡𝑢 is in the
left half-plane extending from the left edge of 𝑉𝑂𝐴|𝐵 for all 𝑡 ∈ [0, 1]; and equivalently for the right
half-plane extending from the right edge of 𝑉𝑂𝐴|𝐵.
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Figure .: (a) Robots 𝐴 and 𝐵 each choose the velocity closest to their current velocity that is outside the
velocity obstacle induced by the other robot. (b) At the next time step, the new velocity of each robot leaves its
previous velocity outside the velocity obstacle so it returns to that velocity at the following time step.

The velocity obstacle has been successfully used to navigate one robot through an environment
containing multiple dynamic obstacles by having the robot select a velocity at each time step that
is outside any of the velocity obstacles induced by the dynamic obstacles (Fiorini and Shiller, ;
Fulgenzi, Spalanzani, and Laugier, ; Prassler, Scholz, and Fiorini, ).Unfortunately, the velocity
obstacle concept does not work well for navigating multiple robots, where each robot is actively
adapting its velocity to avoid the other robots, since it assumes that the other robots never change
their velocities (Abe and Matsuo, ). If all robots were to use velocity obstacles to choose a new
velocity, then there would be inherent oscillations in the trajectories of the robots (Van den Berg, Lin,
and Manocha, ). More precisely, if two robots each selected a new velocity outside the velocity
obstacle of the other, then their old velocities would be valid with respect to the velocity obstacle
based on the new velocities. Hence, the robots would oscillate back to the old velocities, as shown in
Figure ..

2.4.2 Reciprocal Velocity Obstacles

The reciprocal velocity obstacle (Van den Berg, Lin, andManocha, ) addresses the problem
of oscillations caused by the velocity obstacle formulation by incorporating the reactive nature of the
other robots. Instead of having to take all the responsibility for avoiding collisions, as with velocity
obstacles, reciprocal velocity obstacles let a robot take just half of the responsibility for avoiding a
collision while assuming that the other robot involved reciprocates by taking care of the other half.

Definition .. The reciprocal velocity obstacle of robot 𝐴 induced by robot 𝐵 is defined as

𝑅𝑉𝑂𝐴|𝐵 ∶= {𝑣 | 2𝑣 − 𝑣𝐴 ∈ 𝑉𝑂𝐴|𝐵} ⊆ 𝕍
2.

The geometric interpretation of 𝑅𝑉𝑂𝐴|𝐵 in Figure . illustrates that the velocity obstacle has
been effectively translated such that its apex is at 12 (𝑣𝐴 + 𝑣𝐵). In theory, the reciprocal velocity obstacle
formulation guarantees that if both robots select a velocity outside the reciprocal velocity obstacle
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Figure .: The reciprocal velocity obstacle 𝑅𝑉𝑂𝐴|𝐵 of robot 𝐴 induced by robot 𝐵 in the two-dimensional
velocity space.

induced by the other and both robots choose to pass each other on the same side, then the trajectories
of both robots will be free of collisions and oscillations in the local time interval.

By the symmetry, translation invariance, and convexity of the velocity obstacle, it follows
that if 𝑣new𝐴 is in the left half-plane extending from the left edge of 𝑅𝑉𝑂𝐴|𝐵 and 𝑣

new
𝐵 is in the left

half-plane extending from the left edge of 𝑅𝑉𝑂𝐵|𝐴, then 𝑣
new
𝐴 is in the left half-plane extending from

the left edge of 𝑉𝑂𝐴|𝐵(𝑣𝐵 = 𝑣
new
𝐵 ) and 𝑣

new
𝐵 is in the left half-plane extending from the left edge of

𝑉𝑂𝐵|𝐴(𝑣𝐴 = 𝑣
new
𝐴 ). The equivalent statement holds for the right half-planes extending from the right

edges of 𝑅𝑉𝑂𝐴|𝐵 and 𝑅𝑉𝑂𝐵|𝐴. Hence, there will not be collision if 𝑣new𝐴 and 𝑣new𝐵 are chosen, by the
properties of the velocity obstacle (Van den Berg, Lin, and Manocha, ). The trajectories of the
two robots can be shown to be free of oscillations by the translation invariance of the velocity obstacle
(Van den Berg, Lin, and Manocha, ). More formally, if 𝑣new𝐴 = 𝑤 + 𝑢 and 𝑣

new
𝐵 = 𝑣 − 𝑢, then

𝑤 is inside 𝑅𝑉𝑂𝐴|𝐵(𝑣𝐵 = 𝑣, 𝑣𝐴 = 𝑤) if and only if 𝑤 is inside 𝑅𝑉𝑂𝐴|𝐵(𝑣𝐵 = 𝑣 + 𝑢, 𝑣𝐴 = 𝑤 + 𝑢). If
each robot chooses the new velocity closest to its current velocity, then the robots will automatically
pass each other on the same side (Van den Berg, Lin, and Manocha, ), i.e., if 𝑣new𝐴 = 𝑣𝐴 + 𝑢 and
𝑣new𝐵 = 𝑣𝐵 − 𝑢, then 𝑣𝐴 + 𝑢 is outside 𝑅𝑉𝑂𝐴|𝐵 if and only if 𝑣𝐵 − 𝑢 is outside 𝑅𝑉𝑂𝐵|𝐴.

Rather than choosing new velocities closest to their current velocities, to make progress to
their goals, robots 𝐴 and 𝐵 are typically required to select velocities closest to their own preferred
velocities (Definition .), i.e., the velocities directed from the robots towards their goals, denoted
𝑣pref𝐴 and 𝑣pref𝐵 , respectively, as in Figure .. Furthermore, as shown in Figure ., the presence of a
third robot 𝐶may cause at least one of the robots to choose a velocity even farther from its current
velocity. Unfortunately, this means that the robots may not necessarily choose the same side to pass,
which may result in oscillations known as “reciprocal dances” (Feurtey, ).

While distinct from oscillations caused by the velocity obstacle formulation, reciprocal dances
may be equally difficult for the robots to resolve and, in extreme circumstances, this behavior may
become stable and the robots may oscillate forever. More precisely, there exists a configuration in
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Figure .: Situation when reciprocal dances may occur due to the preferred velocity 𝑣pref𝐴 of robot 𝐴 toward its
goal 𝐺 being oriented in a different direction to its current velocity 𝑣𝐴.
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Figure .: Situation when reciprocal dances may occur due to the presence a third robot 𝐶 that causes the
closest new velocity to the current velocity 𝑣𝐴 outside the reciprocal velocity obstacle 𝑅𝑉𝑂𝐴|𝐵 to be inside the
reciprocal velocity obstacle 𝑅𝑉𝑂𝐴|𝐶.
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Figure .: The hybrid reciprocal velocity obstacle 𝐻𝑅𝑉𝑂𝐴|𝐵 of robot 𝐴 induced by robot 𝐵 in the two-
dimensional velocity space. Note that 𝑣𝐴 is right of the centerline 𝐶𝐿 of 𝑅𝑉𝑂𝐴|𝐵, so the apex of𝐻𝑅𝑉𝑂𝐴|𝐵 is
the intersection of the right side of 𝑅𝑉𝑂𝐴|𝐵 and the left side of 𝑉𝑂𝐴|𝐵.

which if 𝑣new𝐴 is the closest velocity to 𝑣pref𝐴 that is outside 𝑅𝑉𝑂𝐴|𝐵(𝑣𝐵 = 𝑣, 𝑣𝐴 = 𝑤) and 𝑣
new
𝐵 is the

closest velocity to 𝑣pref𝐵 that is outside 𝑅𝑉𝑂𝐵|𝐴(𝑣𝐴 = 𝑤, 𝑣𝐵 = 𝑣), then 𝑤 is the closest velocity to 𝑣
pref
𝐴

that is outside 𝑅𝑉𝑂𝐴|𝐵(𝑣𝐵 = 𝑣
new
𝐵 , 𝑣𝐴 = 𝑣

new
𝐴 ) and 𝑣 is the closest velocity to 𝑣

pref
𝐵 that is outside

𝑅𝑉𝑂𝐵|𝐴(𝑣𝐴 = 𝑣
new
𝐴 , 𝑣𝐵 = 𝑣

new
𝐵 ).

2.4.3 Hybrid Reciprocal Velocity Obstacles

To counter this situation, we introduce the hybrid reciprocal velocity obstacle, shown in
Figure .. For robots 𝐴 and 𝐵, if 𝑣𝐴 is to the right of the centerline of 𝑅𝑉𝑂𝐴|𝐵, which implies
by symmetry that 𝑣𝐵 is to the right of the centerline of 𝑅𝑉𝑂𝐵|𝐴, we wish robot 𝐴 to choose a velocity
to the right of 𝑅𝑉𝑂𝐴|𝐵. To encourage this, the reciprocal velocity obstacle is enlarged by replacing the
edge on the side we do not wish the robots to pass, in this instance the left side, by the edge of the
velocity obstacle 𝑉𝑂𝐴|𝐵. The apex of the resulting obstacle corresponds to the point of intersection
between the right side of 𝑅𝑉𝑂𝐴|𝐵 and the left side of 𝑉𝑂𝐴|𝐵. If 𝑣𝐴 is to the left of the centerline, we
mirror the procedure, exchanging left and right. As a hybrid of a reciprocal velocity obstacle and a
velocity obstacle, we call the result a “hybrid reciprocal velocity obstacle,” written𝐻𝑅𝑉𝑂𝐴|𝐵 ⊆ 𝕍

2.
The hybrid reciprocal velocity obstacle formulation has the consequence that if robot𝐴 attempts

to pass on the wrong side of robot 𝐵, then it has to give full priority to robot 𝐵, as with the velocity
obstacle formulation. However, if it does choose the correct side, then it can assume the cooperation
of robot 𝐵 and retains equal priority, as with the reciprocal velocity obstacle formulation. This greatly
reduces the possibility of oscillations while not unduly over constraining the motion of each robot.
While it is still possible for the robots to pass on the wrong side of each other, this behavior is not
stable because the robots may still pass on the correct side of each other in a future time step.
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2.5 Navigating Multiple Mobile Robots

In this section, we show how we apply our hybrid reciprocal velocity obstacle formulation to
navigating multiple mobile robots. We first describe the overall approach, and then explain how to
take into account obstacles in the environment, uncertainty in radius, position, and velocity, and the
kinematics and dynamics of the robots.

2.5.1 Overall Approach

We have defined the hybrid reciprocal velocity obstacle of a robot and one other robot or
dynamic obstacle in an uncluttered environment. Suppose instead that we have a set of robots ℛ
sharing an environment with a set of dynamic and static obstacles 𝒪. Each robot 𝐴 ∈ ℛ has a
preferred velocity, which is the velocity toward its goal that the robot would take were there no other
robot or dynamic obstacles in its path.

Definition .. The preferred velocity of robot 𝐴 toward its goal centered at 𝑝goal𝐴 with constant
preferred speed 𝑣pref𝐴 is defined as

𝑣pref𝐴 ∶= 𝑣
pref
𝐴
𝑝𝐴 − 𝑝

goal
𝐴

‖𝑝𝐴 − 𝑝
goal
𝐴 ‖2
.

As illustrated in Figure ., the combined hybrid reciprocal velocity obstacle of robot𝐴 induced by all
other robots and obstacles in the environment is the union of all hybrid reciprocal velocity obstacles
induced by the other robots individually and all velocity obstacles induced by the obstacles.

Definition .. The combined hybrid reciprocal velocity obstacle of robot 𝐴 induced by robots 𝐵 ∈ ℛ,
with 𝐴 ≠ 𝐵, and obstacles 𝑂 ∈ 𝒪 is defined as

𝐻𝑅𝑉𝑂𝐴 ∶= ⋃
𝐵∈ℛ
𝐴≠𝐵

𝐻𝑅𝑉𝑂𝐴|𝐵 ∪ ⋃
𝑂∈𭒪
𝑉𝑂𝐴|𝑂.

It follows that each robot 𝐴 should select as its new velocity 𝑣new𝐴 the velocity outside the combined
hybrid reciprocal velocity obstacle that is closest to its preferred velocity:

𝑣new𝐴 = argmin
𝑣∉𝐻𝑅𝑉𝑂𝐴

‖𝑣 − 𝑣pref𝐴 ‖2 . (.)

We use the ClearPath efficient geometric algorithm (Guy, Chhugani, Kim, et al., ) to
compute the new velocity. Following the ClearPath approach, which is applicable to many variations
of velocity obstacles, we represent the combined hybrid reciprocal velocity obstacle as a union of line
segments. The line segments are intersected pairwise and the intersection points inside the combined
hybrid reciprocal velocity obstacle are discarded. The remaining intersection points, shown by gold
markers in Figure ., are the permissible new velocities on the boundary of the combined hybrid
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Figure .: The combined hybrid reciprocal velocity obstacle𝐻𝑅𝑉𝑂𝐴 of robot 𝐴. Intersections of line segments
not inside𝐻𝑅𝑉𝑂𝐴 are indicated by gold markers, and projections of preferred velocity 𝑣pref𝐴 onto line segments
not inside𝐻𝑅𝑉𝑂𝐴 are indicated by purple markers. These points are the permissible new velocities of robot 𝐴.

reciprocal velocity obstacle. In addition, we project the preferred velocity 𝑣pref𝐴 onto the line segments
and retain those points that are outside the combined hybrid reciprocal velocity obstacle, as indicated
by the purple markers in Figure .. It is guaranteed that the velocity that is closest to the preferred
velocity 𝑣pref𝐴 of the robot is in either of these two sets of points (Guy, Chhugani, Kim, et al., ),
and we choose that point as the new velocity of the robot.

If there are no permissible new velocities, then we discard the hybrid reciprocal velocity obstacle
of the farthest away robot or obstacle and repeat the ClearPath algorithm until a velocity outside
the combined hybrid reciprocal velocity obstacle becomes available. It is possible that there may be
collisions between robots, or deadlocks if they both stop, however we have only observed this issue
on occasion in simulations with several hundred virtual agents.

While the robot should take the new velocity 𝑣new𝐴 immediately, this may not be directly possible
due to its kinematic constraints. Therefore, the velocity 𝑣new𝐴 is transformed into a control input of the
robot that will let the robot reach velocity 𝑣new𝐴 as soon as possible.The overall approach is summarized
by Algorithm .. Note that we do not require the robots to communicate with each other; the robots
use only the information that they can sense independently.

2.5.2 Dynamic and Static Obstacles

The presence of dynamic and static obstacles in the workspaceℝ2 necessitates slight changes to
our approach. Specifically, the combined hybrid reciprocal velocity obstacle uses the velocity obstacles,
rather than hybrid reciprocal velocity obstacles, of each obstacle in the environment since a robot
cannot assume the cooperation of the obstacles to avoid collisions whichever side of the relevant
reciprocal velocity obstacle the current velocity of the robot lies. The velocity obstacle of a static line
segment obstacle is shown in Figure ..

An additional consideration is that an obstacle may block the path from the current position
of a robot to its goal causing the preferred velocity to be directed toward or through the obstacle. To
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Algorithm .: Our method for navigating multiple mobile robots in the two-dimensional workspace using
hybrid reciprocal velocity obstacles.

inputs
List of robots ℛ ≠ ∅
List of static and dynamic obstacles 𝒪

loop
for all 𝐴 ∈ ℛ do

Sense 𝑝𝐴 and 𝑣𝐴
for all 𝐵 ∈ ℛ such that 𝐴 ≠ 𝐵 do

Sense 𝑝𝐵 and 𝑣𝐵
Construct 𝑉𝑂𝐴|𝐵
Expand 𝑉𝑂𝐴|𝐵 to 𝑉𝑂

∗
𝐴|𝐵

Construct 𝑅𝑉𝑂𝐴|𝐵
Expand 𝑅𝑉𝑂𝐴|𝐵 to 𝑅𝑉𝑂

∗
𝐴|𝐵

Locate centerline 𝐶𝐿∗ of 𝑅𝑉𝑂∗𝐴|𝐵
if 𝑣𝐴 is right of 𝐶𝐿

∗ then
Replace left side of 𝑅𝑉𝑂∗𝐴|𝐵 with left side of 𝑉𝑂∗𝐴|𝐵 to construct𝐻𝑅𝑉𝑂

∗
𝐴|𝐵

else
Replace right side of 𝑅𝑉𝑂∗𝐴|𝐵 with right side of 𝑉𝑂∗𝐴|𝐵 to construct𝐻𝑅𝑉𝑂

∗
𝐴|𝐵

end if
end for
for all 𝑂 ∈ 𝒪 do

Sense 𝑝𝑂 and 𝑣𝑂
Construct 𝑉𝑂𝐴|𝑂
Expand 𝑉𝑂𝐴|𝑂 to 𝑉𝑂

∗
𝐴|𝑂

end for
Construct𝐻𝑅𝑉𝑂∗𝐴 from all𝐻𝑅𝑉𝑂∗𝐴|𝐵 and 𝑉𝑂

∗
𝐴|𝑂

Compute preferred velocity 𝑣pref𝐴
Compute new velocity 𝑣new𝐴 ∉ 𝐻𝑅𝑉𝑂

∗
𝐴 closest to 𝑣

pref
𝐴 using ClearPath algorithm

Compute control inputs from 𝑣new𝐴
Apply control inputs to actuators of 𝐴

end for
end loop

account for this, we can incorporate a global navigation strategy, such as a precomputed probabilistic
roadmap (Kavraki, Švestka, Latombe, et al., ) or rapidly-exploring random tree (LaValle and
Kuffner, ), and use the nearest visible node of a covering roadmap as a waypoint or sub-goal
toward which to direct the preferred velocity rather than directly toward the ultimate goal. An example
of part of such a roadmap is also illustrated in Figure ..

We have found the covering roadmap approach to be preferable to attempting to follow complete
precomputed paths that are guaranteed not to collide with static obstacles since it is unclear how
to compute a preferred velocity that allows a robot to rejoin the path without oscillations if it has
deviated from the path to avoid another robot or dynamic obstacle. Additionally, the precomputed
path may not remain visible if the deviation of a robot from the path is large. When using a covering
roadmap, a robot may simply choose another node, resulting in a different path to the goal.
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Figure .: The velocity obstacle 𝑉𝑂𝐴|𝑂 of robot 𝐴 induced by a static line segment obstacle 𝑂, and part of a
roadmap of sub-goals for navigation to the goal 𝐺 of the robot.

2.5.3 Uncertainty in Radius, Position, and Velocity

To calculate the hybrid reciprocal velocity obstacles induced by other robots, each robot requires
the radius, current position, and current velocity of every robot, and the position and physical extent
of every obstacle. Because this data is obtained using sensors, it inevitably contains uncertainty. This
may jeopardize the correct functioning of our approach.

We assume that each robot has onboard sensing and is able to measure the positions, or relative
positions, of itself and every other robot or obstacle, and that it has prior knowledge or is able to
sense the radius of itself and the other robots. We then use a Kalman filter (Kalman, ) to obtain
accurate estimates of the radii, positions, and velocities of the robots and obstacles. The Kalman filter
also provides an estimate of the variance of the measured quantities.

Now, if 𝑃𝐴 ∼ 𝒩( ̄𝑝𝐴, 𝜎𝑝 𝐴) is a Gaussian distribution of the measured position 𝑝𝐴 with mean
̄𝑝𝐴 and variance 𝜎𝑝 𝐴, and 𝑃𝐵 ∼ 𝒩( ̄𝑝𝐵, 𝜎𝑝 𝐵) is a Gaussian distribution of the measured position 𝑝𝐵

with mean ̄𝑝𝐵 and variance 𝜎𝑝 𝐵, then

𝑃𝐵−𝐴 ∼ 𝒩( ̄𝑝𝐵 − ̄𝑝𝐴, 𝜎𝑝 𝐵−𝐴)

is a Gaussian distribution of the measured relative position 𝑝𝐵 − 𝑝𝐴 with mean ̄𝑝𝐵 − ̄𝑝𝐴 and variance
𝜎𝑝 𝐵−𝐴. Moreover, if 𝑅𝐴 ∼ 𝒩( ̄𝑟𝐴, 𝜎𝑟 𝐴) is a Gaussian distribution of the measured radius 𝑟𝐴 and
𝑅𝐵 ∼ 𝒩( ̄𝑟𝐵, 𝜎𝑟 𝐵) is a Gaussian distribution of the measured radius 𝑟𝐵, then

𝑅𝐴+𝐵 ∼ 𝒩( ̄𝑟𝐴 + ̄𝑟𝐵, 𝜎𝑟 𝐴+𝐵)

is a Gaussian distribution of the measured 𝑟𝐴 + 𝑟𝐵.
Assuming that 𝑉𝐵 ∼ 𝒩( ̄𝑣𝐵, 𝜎𝑣 𝐵) is a Gaussian distribution of the measured velocity 𝑣𝐵, we use

these distributions to construct the “uncertainty-adjusted velocity obstacle,” written 𝑉𝑂∗𝐴|𝐵 ⊆ 𝕍
2, as

follows. First, we expand the relative angle of the sides of the velocity obstacle to encompass the area
corresponding to the Minkowski sum of a disc of radius ̄𝑟𝐴 + ̄𝑟𝐵 + 𝜎𝑟 𝐴+𝐵 and a linear transformation





of a disc centered at ̄𝑝𝐵 − ̄𝑝𝐴 + ̄𝑣𝐵 by the variance 𝜎𝑝 𝐵−𝐴. Secondly, we move the sides of the velocity
obstacle out perpendicularly by an amount large enough to encompass the linear transformation of
a unit disc by the variance 𝜎𝑣 𝐵. As the Gaussian distribution has infinite extent, it is necessary to
choose a finite segment of the distribution. In practice, we have found one standard deviation around
the mean to be acceptable, as shown in Figure ..

The “uncertainty-adjusted reciprocal velocity obstacle,” written 𝑅𝑉𝑂∗𝐴|𝐵 ⊆ 𝕍
2, illustrated in

Figure ., is constructed in a similar manner. We expand the relative angle of the sides of the
reciprocal velocity obstacle to encompass the area corresponding to the Minkowski sum of a disc of
radius ̄𝑟𝐴 + ̄𝑟𝐵 + 𝜎𝑟 𝐴+𝐵 and a linear transformation of a disc centered at ̄𝑝𝐵 − ̄𝑝𝐴 +

1
2 ( ̄𝑣𝐴 + ̄𝑣𝐵) by the

variance 𝜎𝑝 𝐵−𝐴. Assuming that

𝑉(𝐴+𝐵)/2 ∼ 𝒩(
1
2 ( ̄𝑣𝐴 + ̄𝑣𝐵), 𝜎𝑣 (𝐴+𝐵)/2)

is a Gaussian distribution of the measured 12 (𝑣𝐴 + 𝑣𝐵), where 𝑉𝐴 ∼ 𝒩( ̄𝑣𝐴, 𝜎𝑣 𝐴) is a Gaussian
distribution of the velocity 𝑣𝐴, then we move the sides of the velocity obstacle out perpendicularly
by an amount large enough to encompass the linear transformation of a unit disc by the variance
𝜎𝑣 (𝐴+𝐵)/2. Note that if 𝑣𝐴 and 𝑣𝐵 are independent, then 𝑅𝑉𝑂

∗
𝐴|𝐵 will be comparatively smaller than

𝑉𝑂∗𝐴|𝐵.
The “uncertainty-adjusted hybrid reciprocal velocity obstacle,” written𝐻𝑅𝑉𝑂∗𝐴|𝐵 ⊆ 𝕍

2, shown
in Figure ., is constructed from 𝑉𝑂∗𝐴|𝐵 and 𝑅𝑉𝑂

∗
𝐴|𝐵. The “combined uncertainty-adjusted hybrid

reciprocal velocity obstacle,” written𝐻𝑅𝑉𝑂∗𝐴, is constructed in an analogous way to the combined
hybrid reciprocal velocity obstacle (Definition .). Any velocity obstacles 𝑉𝑂𝐴|𝑂 of each obstacle
𝑂 in the environment are expanded to uncertainty-adjusted velocity obstacles 𝑉𝑂∗𝐴|𝑂 as part of the
construction.

2.5.4 Kinematic Constraints

We can apply our approach to mobile robots with differential-drive kinematic constraints. Such
robots, shown in Figure ., use a simple drive mechanism that consists of two drive wheels mounted
on a common axis with each wheel able to be independently driven in both forward and reverse
directions.

Definition .. The kinematic constraints of a differential-drive robot with position (𝑥, 𝑦) ∈ ℝ2,
orientation 𝜃 ∈ 𝕊1, and wheel track 𝐿 ∈ ℝ+ are described by

�̇� =
𝑣left + 𝑣right
2
cos 𝜃,

̇𝑦 =
𝑣left + 𝑣right
2
sin 𝜃,

(.)

̇𝜃 =
𝑣right − 𝑣left
𝐿
, (.)
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Figure .: (a) Two disc-shaped robots 𝐴 and 𝐵 with uncertain positions, velocities, and radii in the
two-dimensional workspace. (b) The uncertainty-adjusted velocity obstacle 𝑉𝑂∗𝐴|𝐵 of robot 𝐴 induced by
robot 𝐵 in the two-dimensional velocity space.
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Figure .: The uncertainty-adjusted hybrid reciprocal velocity obstacle𝐻𝑅𝑉𝑂∗𝐴|𝐵 of robot 𝐴 induced by robot
𝐵 in the two-dimensional velocity space. Since ̄𝑣𝐴 is right of the centerline𝐶𝐿

∗ of𝑅𝑉𝑂∗𝐴|𝐵, the apex of𝐻𝑅𝑉𝑂
∗
𝐴|𝐵

is the intersection of the right side of 𝑅𝑉𝑂∗𝐴|𝐵 and the left side of 𝑉𝑂∗𝐴|𝐵.
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Figure .: The kinematic model of a differential-drive robot with center 𝑝 = (𝑥, 𝑦), radius 𝑟, and wheel track
𝐿 in the two-dimensional workspace. The control inputs are the left and right signed wheel speeds 𝑣left and
𝑣right, respectively.

where the signed left and right wheel speeds 𝑣left, 𝑣right ∈ 𝕍, respectively, are bounded to a given
maximum 𝑣max ∈ 𝕍

+, such that

−𝑣max ≤ 𝑣left ≤ 𝑣max,

−𝑣max ≤ 𝑣right ≤ 𝑣max.
(.)

The signed wheel speeds are the control inputs of the robot. When 𝑣left = 𝑣right > 0, the robot
will move straight forward, when 𝑣left > 𝑣right > 0, it will arc right, and when 𝑣left = −𝑣right ≠ 0, it will
spin in place. The center of the robot is able to follow any continuous path within the workspace ℝ2

(LaValle, ), although not necessarily instantaneously.
Now, we must transform the computed new velocity 𝑣new𝐴 ∈ 𝕍

2 from (.) to wheel speeds
𝑣left, 𝑣right ∈ 𝕍 given the current orientation 𝜃 of the robot. We choose to set 𝑣left and 𝑣right such that
𝑣new𝐴 is obtained after a prescribed amount of time 𝜔 > 0 to ensure oscillation-free motion. More
formally, suppose that 𝑣new𝐴 = (𝑣𝑥, 𝑣𝑦). Then, the target orientation is 𝜙 = arctan(𝑣𝑦/𝑣𝑥) ∈ 𝕊

1 and the
target speed is 𝑢 = ‖𝑣new𝐴 ‖2 ∈ 𝕍. Therefore, to obtain the target speed, it follows from (.) that

𝑣right + 𝑣left = 2𝑢.

Moreover, if the difference between the target orientation and current orientation is 𝛥 = 𝜙 − 𝜃 ∈ 𝕊1,
such that 𝛥 ∈ [−𝜋, 𝜋], then to move from the current orientation to the target orientation in 𝜔 time it
follows directly from (.) that

𝑣right − 𝑣left =
𝐿𝛥
𝜔
.

The desired values of 𝑣left and 𝑣right may be calculated from the system formed by these two equations.
Now, if the constraints of (.) invalidate the computed values of 𝑣left and 𝑣right, we first attempt

to move the values into the interval [−𝑣max, 𝑣max] while keeping 𝑣right − 𝑣left constant, such that the
target orientation is obtained after𝜔 time. If, after this, 𝑣left and 𝑣right still do not satisfy the constraints
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of (.), in which case |𝑣right − 𝑣left| > 2𝑣max, then 𝑣left and 𝑣right are clamped to the extremes of the
interval, such that the robot maximally rotates in place.

The choice of 𝜔must be small enough to allow the robot to react quickly to other robots and
obstacles in its path. However, if set lower than the duration 𝛿𝑡 of each time step, the robot will
overshoot its target orientation, leading to oscillations in its trajectory. A low value of 𝜔 may also
result in less smooth paths, since the robot may have to frequently rotate in place to achieve its target
orientation. In practice, we have found that a value of 𝜔 = 3𝛿𝑡 yields good results.

2.5.5 Dynamic Constraints

Each robot is also likely to be subject to dynamic constraints that reduce the velocities that it
can attain within a time step 𝛿𝑡. Suppose robot𝐴 with current velocity 𝑣𝐴 has a maximum speed 𝑣max𝐴
and maximum acceleration 𝑎max𝐴 , then the set of velocities from which to choose 𝑣new𝐴 is reduced to

{𝑣 | 𝑣 ∉ 𝐻𝑅𝑉𝑂𝐴 ∧ ‖𝑣‖2 ≤ 𝑣
max
𝐴 ∧ ‖𝑣 − 𝑣𝐴‖2 ≤ 𝑎

max
𝐴 𝛿𝑡} ⊆ 𝕍

2.

2.6 Experimentation and Performance

In this section, we describe the implementation of our approach and report the results of our
experiments involving multiple mobile robots or virtual agents.

2.6.1 Implementation

We applied our approach to a set of iRobot Create mobile robots (see Figure .) using wireless
remote control and centralized sensing. The iRobot Create is a differential-drive robot based on the
iRobot Roomba vacuum-cleaning robot (Jones, Mack, Nugent, et al., ). It has two individually
actuated wheels and a third passive caster wheel for balance. The maximum speed of the robot is
.m/s in both forward and reverse directions, its shape is circular with radius .m, and it has a
mass of less than . kg. The limited sensing power of the iRobot Create does not allow it to localize
itself with any degree of accuracy.

For convenience, the robots were tracked centrally using fiducial markers within a m² indoor
space using an overhead Point Grey Flea digital video camera connected to a notebook computer via
FireWire . Images were captured at a resolution of x and a refresh rate of Hz. They were
processed using the ARToolKit augmented reality library (Kato and Billinghurst, ) to determine
the position and orientation of each robot with an absolute error of less than .m. The velocity of
each robot was inferred from the position and orientation measurements using a Kalman filter.

We implemented our approach inC++, and the codewas compiled using the Intel C++Compiler,
version .. All calculations were performed on a dual-core .GHz Intel Core  Duo processor
within a standard notebook computer containing GB of memory and running Microsoft Windows
 Ultimate, -bit version. However, to ensure that our approach applies when each robot uses its own
on-board sensing and computing, only the localizationwas carried out centrally.The other calculations
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Figure .: A photo of four iRobot Create mobile robots in our experimentation setting. Note the fiducial
markers attached to the top of each robot for tracking via an overhead digital video camera.

for each robot were carried out in separate and independent threads and in parallel, where possible,
using Intel Threading Building Blocks, version . The computed wheel speeds, encoded in  b serial
data packets, were sent to the robots over a Bluetooth . virtual serial connection at a speed of
. kb/s and an average latency of . s.

In the simulated experiments of virtual agents, for efficiency, only a subset of all other virtual
agents within a fixed radius of each virtual agent, with respect to Euclidean distance in the workspace
ℝ2, were considered for the computation of hybrid reciprocal velocity obstacles, and these virtual
agents were selected at the beginning of every time step using an algorithm based on 𝑘-D trees (De
Berg, Cheong, Van Kreveld, et al., ).

2.6.2 Experiments

Using the iRobot Create mobile robots, we tested our approach in the following experiments.

.. Five robots are spaced evenly on the perimeter of a circular environment. Their goals are to
navigate to the antipodal positions on the circle. The robots will meet and have to negotiate
around each other in the center.

.. One robot takes the role of a dynamic obstacle moving at a constant velocity. The other robots
have to cross the path of the dynamic obstacle to navigate to their goals.

In addition, we tested the ability of our approach to handle static obstacles and the scalability
of our approach in the following simulated experiments.

.. Four virtual agents must navigate from one side of a rectangular environment to the other,
negotiating around each other in the center. Blocking their path are two static obstacles that
form a passage through which they must pass.

.. From ten to one thousand virtual agents are spaced evenly on the perimeter of a circular
environment. Their goals are to navigate to the antipodal positions on the circle. The virtual
agents will meet and have to negotiate around each other in the center.

Videos of these experiments are available online at http://gamma.cs.unc.edu/HRVO/.
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2.6.3 Discussion

Figure . shows traces of the five robots in Experiment . for three variations of the velocity
obstacle formation. In Figure .(a), when the robots use velocity obstacles, the traces are not smooth
due to oscillations, while in Figure .(b), for reciprocal velocity obstacles, the beginnings of the
traces are not smooth due to reciprocal dances. The traces in Figure .(c), with robots navigating
using hybrid reciprocal velocity obstacles, show no oscillations or reciprocal dances over their entire
lengths for any robot. In each experiment, the velocities of the robots were updated at a rate of Hz,
limited by the refresh rate of the tracking camera.

Figure . shows that, in Experiment ., the hybrid reciprocal velocity obstacle formulation
can naturally deal with the presence of a dynamic obstacle that may not necessarily adapt its motion
to the presence of other robots. Two robots increase speed to cross ahead of the dynamic obstacle,
while the third slows and crosses behind. The combined hybrid reciprocal velocity obstacle of each
robot is the union of the hybrid reciprocal velocity obstacles of the other two robots and the velocity
obstacle of the dynamic obstacle. Note that we do not consider how to identify between a robot and
a dynamic obstacle, simply that our formulation is capable of handling the distinction should it be
made.

Figure . shows the traces, in Experiment ., of four virtual agents navigating though a
passage while avoiding collisions with the static obstacles and each other. The virtual agents merge
into two lines before the passage and pass through in double file. Once they have negotiated the
passage, they move toward their goals.

Figure . shows three screenshots of Experiment ., our simulation with one hundred
virtual agents. Figure .(a) shows the starting configuration, Figure .(b) shows the virtual agents
approaching the center of the circle, and Figure .(c) shows the virtual agents moving towards the
perimeter of the circle having passed the center. All computations were completed in less than  µs
per virtual agent, per time step on one core. The timing of Experiment . for three variations of
velocity obstacles is shown in Table .. Given the reactive nature of the hybrid reciprocal velocity
obstacle formulation, it is difficult to calculate any formal bound on the computation time.

Table . and Figure . show the timing of Experiment . with an increasing number of virtual
agents moving across a circular environment with a radius that has been increased proportionally
to the number of virtual agents. This shows that our formulation can navigate up to one thousand
virtual agents before the computation time per time step exceeds the Hz refresh rate of a sensor
such as the tracking camera used in our experiments with iRobot Create mobile robots. All timings
are for one thread running on a single processor core.

Table . and Figure . show the collisions in Experiment . with an increasing number
of virtual agents moving across a circular environment of fixed radius so that the density of virtual
agents is increased and free space reduced. As the number of virtual agents exceeds one hundred, a
small, increasing number of collisions per time step are observed as there is insufficient space left
uncovered with hybrid reciprocal velocity obstacles for some virtual agents.
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(c)

Figure .: Traces of the trajectories of five mobile robots navigating simultaneously across a circular
environment in the two-dimensional workspace using (a) velocity obstacles, (b) reciprocal velocity obstacles,
and (c) hybrid reciprocal velocity obstacles (Experiment .).
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dynamic obstacle

Figure .: Traces of the trajectories of three mobile robots navigating simultaneously across the path of a
dynamic obstacle (red, near-horizontal line) in the two-dimensional workspace using hybrid reciprocal velocity
obstacles (Experiment .).

static obstacle

static obstacle

Figure .: Traces of the trajectories of four virtual agents navigating simultaneously through a passage
formed by two static obstacles in the two-dimensional workspace using hybrid reciprocal velocity obstacles
(Experiment .).
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Figure .: Screenshots of one hundred virtual agents navigating simultaneously across a circular environment
in the two-dimensional workspace using hybrid reciprocal velocity obstacles (Experiment .).

Table .: Average computation time at each time step on one core of a .GHz Intel Core  Duo processor, in
milliseconds, for virtual agents navigating across a circular environment in the two-dimensional workspace
using velocity obstacles, reciprocal velocity obstacles, and hybrid reciprocal velocity obstacles (Experiment .).

Computation time
per time step (ms)

Velocity obstacle 0.8
Reciprocal velocity obstacle 0.8
Hybrid reciprocal velocity obstacle 1.2
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Table .: Average computation time at each time step on one core of a .GHz Intel Core  Duo processor,
in milliseconds, for virtual agents navigating across a circular environment of increasing radius in the
two-dimensional workspace using hybrid reciprocal velocity obstacles (Experiment .).

Number of Computation time
virtual agents per time step (ms)

10 0.2
100 1.2
200 2.8
300 4.6
400 6.8
500 9.1
1000 25.7
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Figure .: A plot of the average computation time at each time step on one core of a .GHz Intel Core 
Duo processor, in milliseconds, for virtual agents navigating across a circular environment of increasing radius
in the two-dimensional workspace using hybrid reciprocal velocity obstacles (Experiment .).
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Table .: Average number of collisions during each time step between virtual agents navigating across a
circular environment of fixed radius in two-dimensional workspace using hybrid reciprocal velocity obstacles
(Experiment .).

Number of Number of collisions
virtual agents per time step

10 0
100 0.2
200 0.9
300 1.9
400 3.1
500 4.4
1000 15.1
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Figure .: A plot of the average number of collisions during each time step between virtual agents navigating
across a circular environment of fixed radius in the two-dimensional workspace using hybrid reciprocal velocity
obstacles (Experiment .).
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Chapter 

SMOOTH NAVIGATION OF MULTIPLE ROBOTS UNDER DIFFERENTIAL-DRIVE
CONSTRAINTS

3.1 Introduction and Motivation

Most prior work on smooth and collision-free navigation has been limited to single robots
moving among dynamic obstacles. There is extensive work on navigating multiple robots, including
global methods based on centralized or decoupled approaches (Kant and Zucker, ) and local and
reactive methods (Van den Berg, Lin, andManocha, ; Chakravarthy and Ghose, ; Fiorini and
Shiller, ; Fox, Burgard, andThrun, ; Petti and Fraichard, ) for computing collision-free
paths. However, most of these algorithms do not take into account kinematic constraints, nor do they
provide guarantees of smoothness, and the resulting paths may have discontinuities.

We present a local and reactive method for navigating multiple independent robots with
differential-drive constraints in the two-dimensional workspace using the optimal reciprocal collision
avoidance algorithm (Van den Berg, Guy, Lin, et al., ). Optimal reciprocal collision avoidance
excludes an entire half-plane of velocities in the two-dimensional velocity space. While more conserva-
tive than the hybrid reciprocal velocity obstacle, this allows us to make several theoretical guarantees,
including that of smooth trajectories for which we provide a proof. Our method incorporates the
kinematic constraints of a differential-drive robot into the optimal reciprocal collision avoidance
algorithm while preserving the guarantee of smooth trajectories by enlarging, in a precise way, the
radius of a differential-drive robot to an “effective radius” that provides a reference point, which we
call the “effective center,” that can be maneuvered in any direction instantaneously.

We have implemented and applied our approach to a set of iRobot Create robots in an indoor
environment using wireless remote control via Bluetooth and sensing from a ceiling-mounted digital
video camera. Our experiments show that our approach achieves visibly smooth navigation without
collisions in an environment containingmultiple differential-drive robots. We have also demonstrated
the low computational requirements and scalability of our approach in simulations of up to one
thousand differential-drive robots. Moreover, to the best of our knowledge, this is the first algorithm
that theoretically guarantees smooth and collision-free trajectories for multiple independent robots
navigating in a shared environment that is local and reactive and takes into account the kinematic
constraints of a differential-drive robot.



3.2 Prior Work

Some of the earliest work on planning for robots with kinematic constraints dates back to the
Dubins car (Dubins, ), a simplified car model that was restricted to forward motions with a fixed
speed and bounded turning radius. The Reeds-Shepp car (Reeds and Shepp, ) added a reverse
gear to the Dubins car, and the simple car (Latombe, ; Laumond, Sekhavat, and Lamiraux, ;
LaValle, ) extended the model further with variable speed in any direction.

Many works, as described in Section ., have examined the issue of a single robot navigating
through an environment containing dynamic obstacles, including local and reactive methods, such
as the velocity obstacle (Fiorini and Shiller, ) and its extensions to navigating multiple robots or
virtual agents (Van den Berg, Lin, and Manocha, ). These methods do not, however, provide any
theoretical guarantees on the smoothness of the resulting trajectories.

Work on the navigation of multiple robots with kinematic constraints has previously con-
sidered problems such as follow-the-leader behaviors (Desai, Ostrowski, and Kumar, ) and
time-optimal trajectories (Balkcom and Mason, ). Proposed methods have included a modi-
fied rapidly-exploring random tree planner (Bruce and Veloso, ) and mixed integer nonlinear
programming (Peng and Akella, ). While centralized global planners (LaValle, ) generate a
single composite system from many robots and apply traditional single robot navigation algorithms,
prior single robot algorithms for smooth or continuous curvature paths have not necessarily been
applicable to such a system in terms of generating individual trajectories of each robot that are smooth.

3.3 Optimal Reciprocal Collision Avoidance

In this section, we briefly review the concepts of the truncated velocity obstacle and optimal
reciprocal collision avoidance that we use for navigating multiple differential-drive robots in the
two-dimensional workspace and the two-dimensional velocity space. We also provide a proof that
robots navigating using optimal reciprocal collision avoidance are theoretically guaranteed to have
smooth trajectories in the two-dimensional workspace.

3.3.1 Truncated Velocity Obstacles

The velocity obstacle, as defined in Definition ., is the set of all velocities of a robot in the
velocity space𝕍2 that will result in a collision between itself and another robot or dynamic obstacle in
the planeℝ2 at some future moment in time, however distant the potential time of collision. Suppose
instead we only consider collisions that will potentially occur within the short, finite window of time
[0, 𝜏]. Then, we have a truncated velocity obstacle (Van den Berg, Guy, Lin, et al., ; Guy, Chhugani,
Kim, et al., ; Tychonievich, Zaret, Mantegna, et al., ), as follows.

Definition .. The truncated velocity obstacle of robot 𝐴 induced by robot or dynamic obstacle 𝐵
within the window of time [0, 𝜏] is defined as the set of all velocities of robot or dynamic obstacle 𝐵
that may cause a collision between robot 𝐴 and robot or dynamic obstacle 𝐵 within the short, finite
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Figure .: (a) Two disc-shaped robots 𝐴 and 𝐵 with positions 𝑝𝐴 and 𝑝𝐵, velocities 𝑣𝐴 and 𝑣𝐵, and radii 𝑟𝐴
and 𝑟𝐵, respectively, in the two-dimensional workspace. (b) The truncated velocity obstacle 𝑉𝑂𝜏𝐴|𝐵 of robot 𝐴
induced by robot 𝐵 within the finite window of time [0, 𝜏 = 2] (shaded pink) in the two-dimensional velocity
space. The sides of the truncated velocity obstacle 𝑉𝑂𝜏𝐴|𝐵 are tangent to a disc of radius 𝑟𝐴 + 𝑟𝐵 with center
𝑝𝐵 − 𝑝𝐴 and the velocity obstacle is truncated by a disc of radius (𝑟𝐴 + 𝑟𝐵)/𝜏 with center (𝑝𝐵 − 𝑝𝐴)/𝜏.

window of time [0, 𝜏], assuming that each robot or dynamic obstacle continues on the same trajectory
during that window of time, i.e.,

𝑉𝑂𝜏𝐴|𝐵 ∶= {𝑣 | ∃𝑡 ∈ [0, 𝜏] ∶∶ 𝑡(𝑣 − 𝑣𝐵) ∈ 𝐵 ⊕ −𝐴} ⊆ 𝕍
2,

where 𝐴 ⊕ 𝐵 ⊆ ℝ2 denotes the Minkowski sum of robot 𝐴 and robot or dynamic obstacle 𝐵, and
−𝐴 ⊆ ℝ2 denotes robot 𝐴 reflected in its reference point, as described in Definition ..

Figure . shows a configuration of two disc-shaped robots 𝐴 and 𝐵, and the truncated velocity
obstacle 𝑉𝑂𝜏𝐴|𝐵 of robot 𝐴 induced by robot 𝐵. Compare this to Figure . and the non-truncated
velocity obstacle. As in Definition ., when both robots are disc-shaped, as shown in Figure ., then
the definition of the truncated velocity obstacle is simplified.

Definition .. The truncated velocity obstacle of disc-shaped robot 𝐴 with position 𝑝𝐴 and radius
𝑟𝐴 induced by disc-shaped robot or dynamic obstacle 𝐵 with position 𝑝𝐵, velocity 𝑣𝐵, and radius 𝑟𝐵
within the window of time [0, 𝜏] is defined as

𝑉𝑂𝜏𝐴|𝐵 ∶= {𝑣 | ∃𝑡 ∈ [0, 𝜏] ∶∶ 𝑡(𝑣 − 𝑣𝐵) ∈ D(𝑝𝐵 − 𝑝𝐴, 𝑟𝐴 + 𝑟𝐵)} ⊆ 𝕍
2,

where D(𝑝, 𝑟) ⊆ ℝ2 is an open disc of radius 𝑟 ∈ ℝ+ centered at 𝑝 ∈ ℝ.

3.3.2 Optimal Reciprocal Collision Avoidance

As noted in Section .. for non-truncated velocity obstacles, while choosing a velocity from
outside the truncated velocity obstacle induced by another robot or dynamic obstacle ensures that
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Figure .: The optimal reciprocal collision avoidance half-plane 𝑂𝑅𝐶𝐴𝜏𝐴|𝐵 of robot 𝐴 induced by robot 𝐵
within the finite window of time [0, 𝜏] (shaded green) in the two-dimensional velocity space. The half-plane
𝑂𝑅𝐶𝐴𝜏𝐴|𝐵 is bounded by a line perpendicular to 𝑤 through 𝑣𝐴 +

1
2𝑤, where 𝑤 is from 𝑣𝐴 − 𝑣𝐵 to the closest

point on 𝜕𝑉𝑂𝜏𝐴|𝐵.

a robot will not collide with the other robot or dynamic obstacle, their respective trajectories in the
workspace ℝ2 may not be smooth due to oscillations in velocity (Van den Berg, Lin, and Manocha,
). Optimal reciprocal collision avoidance (Van den Berg, Guy, Lin, et al., ) resolves this issue,
and, additionally, allows us to prove that the trajectories in the workspace ℝ2 of robots navigating
using the algorithm are theoretically guaranteed to be smooth.

The optimal reciprocal collision avoidance half-plane of robot 𝐴 induced by robot 𝐵 within the
window of time [0, 𝜏] is defined as follows. Referring to Figure ., let 𝑤 ∈ 𝕍2 be the vector from the
relative velocity 𝑣𝐴 − 𝑣𝐵 ∈ 𝕍

2 to the closest point on the boundary 𝜕𝑉𝑂𝜏𝐴|𝐵 ⊆ 𝕍
2 of the truncated

velocity obstacle 𝑉𝑂𝜏𝐴|𝐵, with respect to Euclidean distance in the velocity space𝕍2, i.e.,

𝑤 ∶= (argmin
𝑣∈𝜕𝑉𝑂𝜏𝐴|𝐵

‖𝑣 − (𝑣𝐴 − 𝑣𝐵)‖2) − (𝑣𝐴 − 𝑣𝐵).

It follows that 𝑤 is the minimum change of the relative velocity 𝑣𝐴 − 𝑣𝐵 that will avoid a collision
between the two robots.

Now, let 𝑛 ∈ 𝕍2 be the outward normal of 𝜕𝑉𝑂𝜏𝐴|𝐵 at the point 𝑣𝐴 − 𝑣𝐵 + 𝑤 ∈ 𝕍
2 and, as in

Definition ., assume that each robot will take half of the responsibility for avoiding a collision while
assuming that the other robot involved reciprocates by taking care of the other half. Hence, both
robots adapt their velocity by 12𝑤 to avoid colliding with each other. It follows that the set of velocities
of robot 𝐴 that will avoid a collision with robot 𝐵 is a half-plane in the direction of 𝑛 starting at the
point 𝑣𝐴 +

1
2𝑤 ∈ 𝕍

2.

Definition .. The optimal reciprocal collision avoidance half-plane of robot 𝐴 induced by robot 𝐵
within the window of time [0, 𝜏] is defined as

𝑂𝑅𝐶𝐴𝜏𝐴|𝐵 ∶= {𝑣 | (𝑣 − (𝑣𝐴 +
1
2𝑤)) ⋅ 𝑛 ≥ 0} ⊆ 𝕍

2,
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where𝑤 is the vector from 𝑣𝐴−𝑣𝐵 to the closest point on the boundary of𝑉𝑂
𝜏
𝐴|𝐵, and 𝑛 is the outward

normal of 𝜕𝑉𝑂𝜏𝐴|𝐵 at the point 𝑣𝐴 − 𝑣𝐵 + 𝑤.

This is the half-plane of velocities shown in Figure .. In common with the truncated velocity
obstacle, both robots can construct their optimal reciprocal collision avoidance half-planes without
communication with each other, requiring knowledge of only the radius, position, and velocity of
each other. It follows that if robot 𝐴 chooses a velocity 𝑣𝐴 ∈ 𝑂𝑅𝐶𝐴

𝜏
𝐴|𝐵 and robot 𝐵 chooses a velocity

𝑣𝐵 ∈ 𝑂𝑅𝐶𝐴
𝜏
𝐵|𝐴, then the trajectories of the robots will be smooth and collision-free within the window

of time [0, 𝜏].

3.3.3 Theoretical Guarantee of Smooth Trajectories

The key property of our formulation, which distinguishes it from other local and reactive
methods, is that it theoretically guarantees that the motion of each robot in the workspace ℝ2 is
smooth.

Definition .. A robot 𝐴 has a smooth trajectory in the workspace ℝ2 if the trajectory 𝑣𝐴(𝑡) in the
velocity space 𝕍2, generated by the sequence of velocities 𝑣𝐴 at each time step, is continuous, for
small time step 𝛿𝑡 → 0, i.e.,

𝑣𝐴(𝑡) ≈ 𝑣𝐴(𝑡),

where ≈ denotes “arbitrarily close to” as 𝛿𝑡 → 0.

Hence, in addition to the theoretical guarantee of collision-free paths (Van den Berg, Guy, Lin, et al.,
), we have the following new result for optimal reciprocal collision avoidance.

Theorem .. Given a small time step 𝛿𝑡, the trajectory 𝑣𝐴(𝑡) in the velocity space𝕍2, generated by the
sequence of velocities 𝑣𝐴 that are computed using optimal reciprocal collision avoidance at each time
step, is continuous, i.e.,

𝑣𝐴(𝑡) ≈ 𝑣𝐴(𝑡 + 𝛿𝑡).

The proof ofTheorem . is by induction on the time step 𝛿𝑡. In the inductive step, we will prove
that

𝑣𝐴(𝑡 + 𝛿𝑡) ≈ 𝑣𝐴(𝑡) ⇒ 𝑣𝐴(𝑡 + 2𝛿𝑡) ≈ 𝑣𝐴(𝑡 + 𝛿𝑡),

and in the base case we will prove that

𝑣𝐴(𝛿𝑡) ≈ 𝑣𝐴(0),

for a proper initialization of the simulation. The proof requires several additional results, which are
presented first.

Lemma .. Given a small time step 𝛿𝑡, the trajectory 𝑣pref𝐴 (𝑡) in the velocity space𝕍2, generated by the
sequence of preferred velocities at each time step, is continuous, i.e.,

𝑣pref𝐴 (𝑡) ≈ 𝑣
pref
𝐴 (𝑡 + 𝛿𝑡).
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Proof. By Definition ., the preferred velocity 𝑣pref𝐴 of each robot is the difference of its current
position and its goal position 𝑝goal𝐴 . Since the trajectory 𝑝𝐴(𝑡) of positions in the workspace ℝ2 is
clearly continuous and 𝑝goal𝐴 is fixed, it follows that 𝑣pref𝐴 (𝑡) is continuous.

Lemma .. Given a small time step 𝛿𝑡, if the trajectory 𝑣𝐴(𝑡) in the velocity space𝕍2, is continuous,
i.e., 𝑣𝐴(𝑡) ≈ 𝑣𝐴(𝑡 + 𝛿𝑡), then the trajectory 𝑂𝑅𝐶𝐴𝜏𝐴|𝐵(𝑡) is continuous, i.e.,

𝑂𝑅𝐶𝐴𝜏𝐴|𝐵(𝑡) ≈ 𝑂𝑅𝐶𝐴
𝜏
𝐴|𝐵(𝑡 + 𝛿𝑡).

Corollary . (of Lemma .). Let𝑂𝑅𝐶𝐴𝜏𝐴(𝑡) be the intersection of half-planes𝑂𝑅𝐶𝐴
𝜏
𝐴|𝐵(𝑡) of all other

robots 𝐵, such that 𝐴 ≠ 𝐵, at time 𝑡. Given a small time step 𝛿𝑡, the trajectory 𝑂𝑅𝐶𝐴𝜏𝐴(𝑡) in the velocity
space𝕍2 is continuous, i.e.,

𝑂𝑅𝐶𝐴𝜏𝐴(𝑡) ≈ 𝑂𝑅𝐶𝐴
𝜏
𝐴(𝑡 + 𝛿𝑡).

Proof. By Definition ., the half-plane 𝑂𝑅𝐶𝐴𝜏𝐴|𝐵 is a tangent line to the truncated velocity obsta-
cle 𝑉𝑂𝜏𝐴|𝐵. The trajectory 𝑉𝑂𝜏𝐴|𝐵(𝑡) is continuous because the trajectory 𝑝𝐴(𝑡) of positions in the
workspace ℝ2 is continuous, the trajectory 𝑣𝐴(𝑡) of velocities in the velocity space𝕍2 is continuous
by the inductive hypothesis, and the radius of robot𝐴 is fixed.Therefore, it follows fromDefinition .
that 𝑂𝑅𝐶𝐴𝜏𝐴|𝐵(𝑡) is continuous.

Lemma .. The optimal reciprocal collision avoidance algorithm selects the new velocity 𝑣𝐴 based on
the preferred velocity 𝑣pref𝐴 and the intersection of half-planes 𝑂𝑅𝐶𝐴𝜏𝐴, i.e.,

𝑣𝐴(𝑡 + 𝛿𝑡) = 𝑓 (𝑣
pref
𝐴 (𝑡), 𝑂𝑅𝐶𝐴

𝜏
𝐴(𝑡)) ,

for some function 𝑓 ∶ 𝕍2 → 𝕍2, the linear programming function. If the trajectory 𝑣pref𝐴 (𝑡) of preferred
velocities in the velocity space𝕍2 is continuous and the trajectory 𝑂𝑅𝐶𝐴𝜏𝐴(𝑡) in the velocity space𝕍2 is
continuous, then the function 𝑓 is continuous, i.e.,

𝑓(𝑣pref𝐴 (𝑡), 𝑂𝑅𝐶𝐴
𝜏
𝐴(𝑡)) ≈ 𝑓 (𝑣

pref
𝐴 (𝑡 + 𝛿𝑡), 𝑂𝑅𝐶𝐴

𝜏
𝐴(𝑡 + 𝛿𝑡)) .

Proof. The function 𝑓 is a projection of 𝑣pref𝐴 (𝑡) onto 𝑂𝑅𝐶𝐴
𝜏
𝐴(𝑡) in the velocity space 𝕍2. Since

the trajectories 𝑣pref𝐴 (𝑡) and 𝑂𝑅𝐶𝐴
𝜏
𝐴(𝑡) in the velocity space 𝕍2 are continuous by Lemma . and

Corollary ., respectively, it follows that the function 𝑓 is continuous.

Proof of Theorem .. The inductive step proceeds as follows. From the optimal reciprocal collision
avoidance algorithm,

𝑣𝐴(𝑡 + 2𝛿𝑡) = 𝑓 (𝑣
pref
𝐴 (𝑡 + 𝛿𝑡), 𝑂𝑅𝐶𝐴

𝜏
𝐴(𝑡 + 𝛿𝑡)) .
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Moreover,𝑂𝑅𝐶𝐴𝜏𝐴(𝑡+𝛿𝑡) ≈ 𝑂𝑅𝐶𝐴
𝜏
𝐴(𝑡) from Corollary . and 𝑣pref𝐴 (𝑡+𝛿𝑡) ≈ 𝑣

pref
𝐴 (𝑡) from Lemma ..

The function 𝑓 is continuous, i.e.,

𝑓(𝑣pref𝐴 (𝑡 + 𝛿𝑡), 𝑂𝑅𝐶𝐴
𝜏
𝐴(𝑡 + 𝛿𝑡)) ≈ 𝑓 (𝑣

pref
𝐴 (𝑡), 𝑂𝑅𝐶𝐴

𝜏
𝐴(𝑡)) ,

and by Lemma .,
𝑣𝐴(𝑡 + 𝛿𝑡) = 𝑓 (𝑣

pref
𝐴 (𝑡), 𝑂𝑅𝐶𝐴

𝜏
𝐴(𝑡)) .

Hence, 𝑣𝐴(𝑡 + 2𝛿𝑡) ≈ 𝑣𝐴(𝑡 + 𝛿𝑡). By the inductive hypothesis in Lemma ., 𝑣𝐴(𝑡) is continuous, i.e.,
𝑣𝐴(𝑡 + 𝛿𝑡) ≈ 𝑣𝐴(𝑡), so it follows that

𝑣𝐴(𝑡 + 2𝛿𝑡) ≈ 𝑣𝐴(𝑡 + 𝛿𝑡),

as required.
The base case of the inductive proof is 𝑣𝐴(𝛿𝑡) ≈ 𝑣𝐴(0). This occurs if each robot is initialized

with 𝑣𝐴(0) = 𝑣
pref
𝐴 (0) and its starting position is such that all other robots are sufficiently distant that

𝑣pref𝐴 (0) ∈ 𝑂𝑅𝐶𝐴
𝜏
𝐴. Then, the robot can keep moving at its preferred velocity 𝑣pref𝐴 after the first time

step, i.e., 𝑣𝐴(𝛿𝑡) = 𝑣
pref
𝐴 (𝛿𝑡). Hence, 𝑣𝐴(𝛿𝑡) ≈ 𝑣𝐴(0) by Lemma ., as required.

3.4 Navigating Multiple Differential-Drive Robots

In this section, we show how we apply optimal reciprocal collision avoidance to navigating
multiple differential-drive robots. We describe the overall approach and explain how to take into
account obstacles in the environment, uncertainty in radius, position, and velocity, and outline a
method for transforming collision-free velocities to the control inputs of the robot that maintains the
theoretical guarantee that the trajectory of the robot will be smooth.

3.4.1 Overall Approach

We adopt the problem description and notation of Section . and suppose now that we have a
set of differential-drive robots ℛ sharing an environment in the workspace ℝ2 with a set of dynamic
and static obstacles 𝒪. Each differential-drive robot 𝐴 has a preferred velocity 𝑣pref𝐴 , as defined by
Definition ., toward its point goal. It follows that the space of optimal reciprocal collision avoidance
velocities of differential-drive robot 𝐴 induced by all other robots 𝐵, such that 𝐴 ≠ 𝐵, within the
window of time [0, 𝜏] is the intersection of optimal reciprocal collision avoidance half-planes induced
by each other robot 𝐵:

𝑂𝑅𝐶𝐴𝜏𝐴 ∶= ⋂
𝐵∈ℛ
𝐴≠𝐵

𝑂𝑅𝐶𝐴𝜏𝐴|𝐵 ⊆ 𝕍
2.

Each differential-drive robot 𝐴 should, subject to its kinematic constraints, select as its new
velocity 𝑣new𝐴 the velocity inside the intersection of optimal reciprocal collision avoidance half-planes
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Algorithm .: Our method for navigating multiple differential-drive robots in the two-dimensional workspace
using optimal reciprocal collision avoidance with effective center and effective radius.

inputs
List of differential-drive robots ℛ ≠ ∅
List of static and dynamic obstacles 𝒪

loop
for all 𝐴 ∈ ℛ do

Sense 𝑝𝐴 = (𝑥, 𝑦)𝐴 and 𝑣𝐴
Calculate 𝑞𝐴 = (𝑋, 𝑌)𝐴
for all 𝐵 ∈ ℛ such that 𝐴 ≠ 𝐵 do

Sense 𝑝𝐵 = (𝑥, 𝑦)𝐵 and 𝑣𝐵
Calculate 𝑞𝐵 = (𝑋, 𝑌)𝐵
Construct 𝑉𝑂𝜏𝐴|𝐵
Expand 𝑉𝑂𝜏𝐴|𝐵 to 𝑉𝑂

𝜏∗
𝐴|𝐵

Construct 𝑂𝑅𝐶𝐴𝜏∗𝐴|𝐵
end for
for all 𝑂 ∈ 𝒪 do

Sense 𝑝𝑂 and 𝑣𝑂
Construct 𝑉𝑂𝜏𝐴|𝑂
Expand 𝑉𝑂𝜏𝐴|𝑂 to 𝑉𝑂

𝜏∗
𝐴|𝑂

Construct 𝑂𝑅𝐶𝐴𝜏∗𝐴|𝑂
end for
Construct 𝑂𝑅𝐶𝐴𝜏∗𝐴 from all 𝑂𝑅𝐶𝐴𝜏∗𝐴|𝐵 and 𝑂𝑅𝐶𝐴

𝜏∗
𝐴|𝑂

Compute preferred velocity 𝑣pref𝐴
Compute new velocity 𝑣new𝐴 ∈ 𝑂𝑅𝐶𝐴

𝜏∗
𝐴 closest to 𝑣pref𝐴 using linear programming

Compute control inputs 𝑢 = (𝑣left, 𝑣right) from 𝑣
new
𝐴 by solving 𝑣𝐴 = 𝑀(𝜃) ⋅ 𝑢

Apply control inputs to actuators of 𝐴
end for

end loop

that is closest to its preferred velocity:

𝑣new𝐴 = argmin
𝑣∈𝑂𝑅𝐶𝐴𝜏𝐴

‖𝑣 − 𝑣pref𝐴 ‖2 . (.)

This may be calculated efficiently using a linear programming algorithm (De Berg, Cheong, Van
Kreveld, et al., ). The overall approach is summarized by Algorithm ..

3.4.2 Dynamic and Static Obstacles

Dynamic and static obstacles in the workspaceℝ2 are handled in a broadly similar way to other
robots in the environment with the exception that since an obstacle does not reciprocate in making
a collision-avoiding maneuver, the optimal reciprocal collision avoidance half-plane 𝑂𝑅𝐶𝐴𝜏𝐴|𝑂 of
robot 𝐴 induced by obstacle 𝑂 within the window of time [0, 𝜏] is the tangent line to 𝜕𝑉𝑂𝜏𝐴|𝑂 at the
closest point to the velocity 𝑣𝐴 ∈ 𝕍

2 of the robot, with respect to Euclidean distance in the velocity
space𝕍2, as described in Van den Berg, Guy, Lin, et al. (). This follows the same reasoning as the
use of velocity obstacles in place of hybrid reciprocal velocity obstacles in Section ... Similarly, a
covering roadmap (Canny, ) may be incorporated into the calculations of the preferred velocity
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(Definition .), with each robot navigating to the nearest visible roadmap node as a waypoint to their
ultimate goal position.

3.4.3 Uncertainty in Radius, Position, and Velocity

Since each differential-drive robot uses sensors to measure the radius, position, and velocity of
every robot and dynamic obstacle, and the position and physical extent of every static obstacle, this
data may be uncertain. Hence, the position and orientation of the corresponding truncated velocity
obstacles and optimal reciprocal collision avoidance half-planes may also be uncertain.

Assuming that each robot has onboard sensing and is able to measure the positions and derive
the velocities of itself and every other robot or obstacle, and that it has prior knowledge or is able to
sense the radius of itself and the other robots and dynamic obstacles and the position and physical
extent of the static obstacles, we can adapt the idea of an uncertainty-adjusted velocity obstacle from
Section .. to an uncertainty-adjusted truncated velocity obstacle.

Definition .. The uncertainty-adjusted truncated velocity obstacle of robot 𝐴 induced by robot or
dynamic obstacle 𝐵, written 𝑉𝑂𝜏∗𝐴|𝐵 ⊆ 𝕍

2, is defined as the union of all truncated velocity obstacles
𝑉𝑂𝜏𝐴|𝐵 ⊆ 𝕍

2 over all radii and positions of robot 𝐴 and robot or dynamic obstacle 𝐵 in the workspace
ℝ2 and all velocities of robot or dynamic obstacle 𝐵 in the velocity space 𝕍2 within one standard
deviation of their respective means.

If we substitute the uncertainty-adjusted truncated velocity obstacle 𝑉𝑂𝜏∗𝐴|𝐵 for 𝑉𝑂
𝜏
𝐴|𝐵 in Defi-

nition ., then we have the uncertainty-adjusted optimal reciprocal collision avoidance half-plane.

Definition .. The uncertainty-adjusted optimal reciprocal collision avoidance half-plane of robot 𝐴
induced by robot 𝐵 within the window of time [0, 𝜏] is defined as

𝑂𝑅𝐶𝐴𝜏∗𝐴|𝐵 ∶= {𝑣 | (𝑣 − (𝑣𝐴 +
1
2𝑤
∗)) ⋅ 𝑛∗ ≥ 0} ⊆ 𝕍2,

where 𝑤∗ is the vector from 𝑣𝐴 − 𝑣𝐵 to the closest point on the boundary of 𝑉𝑂𝜏∗𝐴|𝐵, and 𝑛
∗ is the

outward normal of 𝜕𝑉𝑂𝜏∗𝐴|𝐵 at the point 𝑣𝐴 − 𝑣𝐵 + 𝑤
∗.

3.4.4 Kinematic Constraints

Recall from Definition . that the kinematic constraints of a differential-drive robot are
described by

�̇� =
𝑣left + 𝑣right
2
cos 𝜃,

̇𝑦 =
𝑣left + 𝑣right
2
sin 𝜃,

(.)

̇𝜃 =
𝑣right − 𝑣left
𝐿
, (.)
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where 𝐿 ∈ ℝ+ is the wheel track of the robot and 𝑣left, 𝑣right ∈ 𝕍 are the signed wheel speeds.
Recall also that the wheel speeds are the control inputs of the robot and are bounded such that
𝑣left, 𝑣right ∈ [−𝑣max, 𝑣max] ⊆ 𝕍. The center of the robot is able to follow any continuous path within
the environment, but not instantaneously as it may need to spin to change orientation.

As in Section .., we must transform the computed new velocity 𝑣new𝐴 ∈ 𝕍
2 from (.) to

wheel speeds 𝑣left and 𝑣right. However, since we would also like to preserve the theoretical guarantee
that the trajectories of the robot will be smooth, we must take a different approach. Since the physical
center 𝑝𝐴 of a differential-drive robot 𝐴 with radius 𝑟𝐴 ∈ ℝ

+ cannot move in any direction in the
workspace ℝ2 instantaneously, we choose a different reference point 𝑞𝐴 and radius 𝑅𝐴 ∈ ℝ

+ for
which to perform optimal reciprocal collision avoidance.

Definition .. The effective center of a differential-drive robot 𝐴 is defined as the reference point
𝑞𝐴 = (𝑋, 𝑌)𝐴 ∈ ℝ

2 translated forward a distance𝐷 ∈ ℝ+ from the physical center 𝑝𝐴 = (𝑥, 𝑦)𝐴 ∈ ℝ
2

of the robot in a direction parallel to the wheels of the robot, i.e.,

𝑋 ∶= 𝑥 + 𝐷 cos 𝜃,

𝑌 ∶= 𝑦 + 𝐷 sin 𝜃.
(.)

Definition .. The effective radius of a differential-drive robot 𝐴 is the radius

𝑅𝐴 ∶= 𝑟𝐴 + 𝐷 ∈ ℝ
+

of the enlarged disc centered at the effective center 𝑞𝐴 ∈ 𝕍
2 that bounds the entire physical extent of

the robot.

The effective center and effective radius are shown in Figure .. Unlike the physical center of
the robot, the effective center may be translated in a direction orthogonal to the orientation of the
wheels of the robot.

Now, substituting (.) into (.) and applying the chain rule, we have

�̇� = (
cos 𝜃
2
+
𝐷 sin 𝜃
𝐿
) 𝑣left + (

cos 𝜃
2
−
𝐷 sin 𝜃
𝐿
) 𝑣right,

�̇� = (
sin 𝜃
2
−
𝐷 cos 𝜃
𝐿
) 𝑣left + (

sin 𝜃
2
+
𝐷 cos 𝜃
𝐿
) 𝑣right.

(.)

This gives us a linear system of the form

𝑣 = 𝑀(𝜃) ⋅ 𝑢, (.)

where 𝑢 = (𝑣left, 𝑣right) ∈ 𝕍 ×𝕍 represents the control inputs, 𝑣 = (�̇�, �̇�) ∈ 𝕍
2 represents the velocity,

and𝑀(𝜃) ∶ 𝕍 × 𝕍 → 𝕍2 is a two-dimensional matrix. Hence, we can obtain control inputs and
wheel speeds 𝑣left and 𝑣right from a velocity 𝑣 by solving 𝑢 = 𝑀−1(𝜃) ⋅ 𝑣. Note that𝐷 ≠ 0 and 𝐿 ≠ 0 by
definition, so the matrix𝑀(𝜃) is invertible for all 𝜃 ∈ 𝕊1.
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Figure .: The kinematic model of a differential-drive robot with physical center 𝑝 = (𝑥, 𝑦), physical radius 𝑟,
and wheel track 𝐿 in the two-dimensional workspace. The effective center 𝑞 = (𝑋, 𝑌) is located a distance 𝐷
from 𝑝 and the effective radius is 𝑅. The control inputs are the left and right signed wheel speeds 𝑣left and 𝑣right,
respectively.

Since the control inputs of a differential-drive robot are bounded, 𝑢 lies within an axis-aligned
square 𝑆 with lower left vertex (−𝑣max, −𝑣max) and upper right vertex (𝑣max, 𝑣max). Hence, the set of
velocities 𝑣 that the robot can attain is given by the linear transformation𝑀(𝜃) ⋅ 𝑆. It follows that
if 𝐷 = 𝑟, in which case the effective radius is 𝑅 = 2𝑟, then this set of velocities is a square 𝑇 whose
center lies at 𝑣 = (0, 0) and whose orientation depends on 𝜃. The incircle of 𝑇 therefore contains the
velocities that can be attained regardless of orientation 𝜃 ∈ 𝕊1. Hence, using the notion of effective
center and effective radius, we have following results.

Lemma .. Given a small time step 𝛿𝑡, if the trajectory 𝑣𝑞 𝐴(𝑡) in the velocity space𝕍2, generated by
the sequence of velocities 𝑣𝑞 𝐴 = (�̇�, �̇�)𝐴 at the effective center 𝑞𝐴 = (𝑋, 𝑌)𝐴 of a differential-drive robot
𝐴 at each time step, is continuous, i.e.,

𝑣𝑞 𝐴(𝑡) ≈ 𝑣𝑞 𝐴(𝑡 + 𝛿𝑡),

then the trajectory 𝑣𝑝 𝐴(𝑡) in the velocity space𝕍
2, generated by the sequence of velocities 𝑣𝑝 𝐴 = (�̇�, ̇𝑦)𝐴

at the physical center 𝑝𝐴 = (𝑥, 𝑦)𝐴 of the robot, is continuous, i.e.,

𝑣𝑝 𝐴(𝑡) ≈ 𝑣𝑝 𝐴(𝑡 + 𝛿𝑡).

Proof. If 𝑣𝑞 𝐴(𝑡) is continuous, then by (.), the trajectory𝑀(𝜃)⋅𝑢(𝑡) is continuous. Referring to (.),
it is easy to show by induction on the time step 𝛿𝑡 that 𝜃 is continuous when the robot is initialized as
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in the base case of the proof of Theorem .. Therefore, 𝑢(𝑡) = (𝑣left, 𝑣right)(𝑡) is continuous. By (.),
it follows that 𝑣𝑝 𝐴(𝑡) = (�̇�, ̇𝑦)𝐴(𝑡) is continuous, as required.

Corollary . (of Theorem .). Given a small time step 𝛿𝑡, the trajectory 𝑣𝑝 𝐴(𝑡) in the velocity space
𝕍2, generated by the sequence of velocities 𝑣𝑝 𝐴 = (�̇�, ̇𝑦)𝐴 at the physical center 𝑝𝐴 = (𝑥, 𝑦)𝐴 of the
robot that are computed using optimal reciprocal collision avoidance with effective center and effective
radius at each time step, is continuous, i.e., 𝑣𝑝 𝐴(𝑡) ≈ 𝑣𝑝 𝐴(𝑡 + 𝛿𝑡).

Proof. Follows directly fromTheorem . and Lemma ..

The guarantee given by Van den Berg, Guy, Lin, et al. () that optimal reciprocal collision
avoidance generates locally collision-free paths also holds for differential-drive robots navigating
using the notion of effective center and effective radius.

Corollary . (of Van den Berg, Guy, Lin, et al.). Given a small time step 𝛿𝑡, the path 𝑝𝐴(𝑡) in the
workspace ℝ2, generated by the sequence of positions 𝑝𝐴 of the physical center of a differential-drive
robot using optimal reciprocal collision avoidance with effective center and effective radius at each time
step, is free of collisions with the paths 𝑝𝐵(𝑡) of every other robot 𝐵.

Proof. Choosing a velocity 𝑣𝐴 within the intersection of half-planes 𝑂𝑅𝐶𝐴𝜏𝐴 ensures that the disc
D(𝑞𝐴, 𝑅𝐴) of effective center 𝑞𝐴 and effective radius 𝑅𝐴 is collision free by Van den Berg, Guy, Lin,
et al.Robot 𝐴 is always completely contained by this disc, so its path 𝑝𝐴(𝑡)must be free of collisions,
as required.

We can only guarantee a collision-free velocity will be found when 𝑂𝑅𝐶𝐴𝜏𝐴 ≠ ∅. Potentially,
the enlarged, effective radius of each differential-drive robot could make the situation 𝑂𝑅𝐶𝐴𝜏𝐴 = ∅
more likely than when using the physical radius conventionally, but this has not been an issue that we
have observed in practice.

3.5 Experimentation and Performance

In this section, we describe the implementation of our algorithm and present the results of our
experiments with differential-drive robots.

3.5.1 Implementation

We again applied our approach to a set of iRobot Create differential-drive robots, and our
experimental setup was similar to that described in Section ... The robots were tracked centrally
using fiducial markers within a m² indoor space using a Point Grey Flea digital video camera
connected via FireWire  to a notebook computer, and processed using the ARToolKit augmented
reality library (Kato and Billinghurst, ) to determine the position and orientation of each robot.
The velocity of each robot was inferred from the position and orientation measurements using a
Kalman filter (Kalman, ).
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We implemented our approach in C++, and the code was compiled using the Intel C++
Compiler, version .. All calculations were performed on a dual-core .GHz Intel Core  Duo
processor within a standard notebook computer containing GB of memory and running Microsoft
Windows Vista Ultimate, -bit version. Calculations for each robot were carried out in separate and
independent threads and in parallel, where possible, using OpenMP, version .. The computed wheel
speeds were sent to the robots over a Bluetooth . virtual serial connection. The velocities of the
differential-drive robots were updated at a rate of Hz, limited by the refresh rate of the tracking
camera.

In the simulated experiments, only a subset of all other robots within a fixed radius of each
differential-drive robot, with respect to Euclidean distance in the workspace ℝ2, were considered for
computation of optimal reciprocal collision avoidance half-planes. These robots were chosen using
an algorithm based on 𝑘-D trees (De Berg, Cheong, Van Kreveld, et al., ).

3.5.2 Experiments

Using the iRobot Create robots and simulated differential-drive robots, we tested our approach
in the following experiments.

.. Four differential-drive robots are placed at the corners of a rectangular environment.Their goals
are to navigate to the corners diagonally opposite. The robots will meet and have to negotiate
around each other in the center.

.. The center of the environment is blocked by a robot that has malfunctioned and is unable to
move. Experiment . is repeated, but the remaining three differential-drive robots must avoid
each other and the malfunctioning robot.

.. From ten to one thousand simulated differential-drive robots are spaced evenly on the perimeter
of a circular environment. Their goals are to navigate to the antipodal positions on the circle.
The robots will meet and have to negotiate around each other in the center.

3.5.3 Discussion

Traces of the differential-drive robots are shown in Figure . for Experiment .. The paths
generated by our algorithm are free of collisions and do not exhibit any oscillations in velocity. Each
of the four differential-drive robots makes just enough room for the other robots, resulting in direct
paths from the starting position to the goal position with a minimal amount of deviation.

In Experiment ., we demonstrate that our algorithm generates paths that are visibly smooth
and free of collisions, as shown in Figure ., even when the direct path from the starting position to
the goal position of each differential-drive robot is blocked by the malfunctioning robot.

Table . and Figure . show the timing of Experiment . with an increasing number of
simulated differential-drive robots moving across a circle with a radius that has been increased
proportionally to the number of robots. Computation time, per time step, increases linearly with





respect to the number of simulated differential-drive robots. Even with as many as one thousand
robots, the simulation updates at a rate of more than Hz. This is more than ten times faster than
when using the hybrid reciprocal velocity obstacles. All timings are for one thread running on a single
processor core.

Table . and Figure . show the collisions in Experiment . with an increasing number of
simulated differential-drive robots moving across a circular environment of fixed radius. A small
number of collisions are observed as the number of robots exceeds one hundred, around double those
of when using hybrid reciprocal velocity obstacles.
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Figure .: Traces of the trajectories of four differential-drive robots navigating simultaneously across a
rectangular environment in the two-dimensional workspace using optimal reciprocal collision avoidance
with effective center and effective radius (Experiment .).

static obstacle

Figure .: Traces of the trajectories of three differential-drive robots navigating simultaneously across a rectan-
gular environment containing a static, malfunctioning robot (black disc) in the two-dimensional workspace
using optimal reciprocal collision avoidance with effective center and effective radius (Experiment .).
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Table .: Average computation time at each time step on one core of a .GHz Intel Core  Duo processor,
in milliseconds, for differential-drive robots navigating across a circular environment of increasing radius in
the two-dimensional workspace using optimal reciprocal collision avoidance with effective center and effective
radius (Experiment .).

Number of Computation time
differential-drive robots per time step (ms)

10 0.1
100 0.4
200 0.6
300 1.0
400 1.2
500 1.5
1000 3.0
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Figure .: A plot of the average computation time at each time step on one core of a .GHz Intel Core  Duo
processor, in milliseconds, for differential-drive robots navigating across a circular environment of increasing
radius in the two-dimensional workspace using optimal reciprocal collision avoidance with effective center and
effective radius (Experiment .).
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Table .: Average number of collisions during each time step between differential-drive robots navigating
across a circular environment of fixed radius in the two-dimensional workspace using optimal reciprocal
collision avoidance with effective center and effective radius (Experiment .).

Number of Number of collisions
differential-drive robots per time step

10 0
100 0.3
200 1.4
300 3.3
400 5.6
500 9.4
1000 28.4

 0

 5

 10

 15

 20

 25

 30

 0  200  400  600  800  1000

N
um

be
r o

f c
ol

lis
io

ns

Number of di�erential-drive robots

Figure .: A plot of the average number of collisions during each time step between differential-drive robots
navigating across a circular environment of fixed radius in the two-dimensional workspace using optimal
reciprocal collision avoidance with effective center and effective radius (Experiment .).
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Chapter 

NAVIGATINGMULTIPLE SIMPLE-AIRPLANES IN THREE-DIMENSIONAL
WORKSPACE

4.1 Introduction and Motivation

While there is extensive work on the navigation and coordination of multiple mobile robots,
most prior methods are either limited to robots moving in the two-dimensional workspace or do
not take into account the kinematic and dynamic constraints on the motion of the robots. Moreover,
many methods focus only on task allocation or precompute the entire path of each robot, rather than
perform dynamic collision avoidance and navigation.

We present a method for navigating multiple airplanes with kinematic and dynamic constraints
in the three-dimensional workspace among dynamic obstacles. We use a simplified kinematic and
dynamic model for each airplane based on the two-dimensional simple car model (Latombe, ;
Laumond, Sekhavat, and Lamiraux, ; LaValle, ). Instead of fixing either the speed (Chitsaz
and LaValle, ) or altitude (Richards and How, ) of the airplane, we allow both quantities
to vary continuously and refer to the resulting kinematic model as a “simple-airplane.” By extend-
ing the optimal reciprocal collision avoidance algorithm (Van den Berg, Guy, Lin, et al., ) to
the three-dimensional workspace, we compute collision-free and oscillation-free motion for each
simple-airplane among dynamic obstacles and each other. Moreover, we compute the trajectory of
each simple-airplane independently and assume no centralized coordination of the simple-airplanes.

Instead of distributing the load equally among the simple-airplanes for collision avoidance,
fifty percent for each, we introduce the notion of “variable reciprocity” between pairs of simple-
airplanes. Informally, variable reciprocity assigns a higher responsibility for avoiding collisions to a
simple-airplane that has fewer constraints in terms of choosing its velocity.We deal with the kinematic
and dynamic constraints of each simple-airplane by sampling velocities froma reduced set of kinematic
and dynamic constraints, and then satisfy the remaining kinematic constraints by enumerating a set
of precomputed curves that correspond to solutions of the equations that define the kinematic model
of the simple-airplane.

We have implemented our method and performed experiments that simulate up to sixteen
simple-airplanes sharing an environment. Our experimental results show that our method computes
trajectories that are observed to be both free of collisions and free of oscillations while satisfying the
kinematic and dynamic constraints of each simple-airplane even in the presence of dynamic obstacles.



4.2 Prior Work

The seminal work Dubins () describes the kinematic constraints of a simplified car that
is restricted to forward motions with a fixed constant speed within a bounded turning radius. Later
work has generalized the Dubins car model into the model of the simple car (LaValle, ) by
adding a reverse gear (Boissonnat, Cérézo, and Leblond, ; Reeds and Shepp, ; Sussmann and
Tang, ) and variable speed in any direction subject to a maximum steering angle (Latombe, ;
Laumond, Sekhavat, and Lamiraux, ).

The Dubins airplane (Chitsaz and LaValle, ) extends the Dubins car into three dimensions
with the addition of a varying altitude. While its airspeed remains constant, the rate of change of
altitude of a Dubins airplane may vary continuously. Other simplified models for airplanes, e.g.,
Richards and How (), choose to fix the altitude and allow the airspeed of the airplane to vary. It
is far less common to allow the altitude as well as the airspeed to vary, particularly when navigating
multiple airplanes in a shared environment.

Research in the coordination and navigation of multiple airplanes has mainly concentrated
on efficient task allocation, e.g., Richards, Bellingham, Tillerson, et al. (), or management of air
traffic control (Arkin, Mitchell, and Polishchuk, ; Chiang, Klosowski, Lee, et al., ) rather than
local collision avoidance. However, there exists a large amount of work on collision-free navigation in
the two-dimensional workspace in the context of multiple robots or virtual agents, as described in
Sections . and ..

4.3 Navigating Multiple Simple-Airplanes

In this section, we describe the kinematic and dynamic constraints of the simple-airplanemodel
and outline our approach for navigating multiple simple-airplanes using optimal reciprocal collision
avoidance with variable reciprocity.

4.3.1 Overall Approach

We transfer the problem description and notation of Section . from mobile robots or vir-
tual agents in the two-dimensional workspace ℝ2 to simplified airplanes in the three-dimensional
workspaceℝ3.We have a nonempty set𝒮 of sphere-bounded airplanes and, possibly, a set𝒪 of dynamic
obstacles sharing an environment in the three-dimensional workspace ℝ3 and the three-dimensional
velocity space 𝕍3. Each simplified airplane 𝐴 ∈ 𝒮 has a fixed bounding radius 𝑟𝐴 ∈ ℝ

+, a current
position 𝑝𝐴 ∈ ℝ

3, and a current velocity 𝑣𝐴 ∈ 𝕍
3, as well as a point goal located at 𝑝goal𝐴 ∈ ℝ

3 and a
preferred speed 𝑣pref𝐴 ∈ 𝕍

+. Each airplane has “simple-airplane” kinematic and dynamic constraints
on its motion, including a minimum speed that it must exceed at all times.

Algorithm . outlines our overall approach. Initially, a simple-airplane acquires its own po-
sition and velocity, and those of surrounding simple-airplanes. It also estimates the kinematic and
dynamic constraints of the other simple-airplanes based on their prior motion over several time
steps. The set of velocities that correspond to a reduced set of kinematic and dynamic constraints are
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Algorithm .: Our method for navigating multiple simple-airplanes in the three-dimensional workspace using
optimal reciprocal collision avoidance with variable reciprocity.

inputs
List of simple-airplanes 𝒮 ≠ ∅
List of dynamic obstacles 𝒪

for all 𝐴 ∈ 𝒮 do
Sample full constraint space 𝑈𝐴 and precompute curves 𝛾𝐴 ∈ 𝛤𝐴

end for
loop

for all 𝐴 ∈ 𝒮 do
Sense 𝑝𝐴 and 𝑣𝐴
Estimate reduced constraint space 𝑈∗𝐴 and velocities 𝑉∗𝐴
for all 𝐵 ∈ 𝒮 such that 𝐴 ≠ 𝐵 do

Sense 𝑝𝐵 and 𝑣𝐵
Construct 𝑉𝑂𝜏𝐴|𝐵
Estimate reduced constraint space 𝑈∗𝐵 and velocities 𝑉∗𝐵
Compute reciprocity factor 𝜌𝐴|𝐵 from 𝜇(𝑉

∗
𝐴) and 𝜇(𝑉

∗
𝐵)

Construct 𝑂𝑅𝐶𝐴𝜏,𝜌𝐴|𝐵
end for
for all 𝑂 ∈ 𝒪 do

Sense 𝑝𝑂 and 𝑣𝑂
Construct 𝑉𝑂𝜏𝐴|𝑂
Construct 𝑂𝑅𝐶𝐴𝜏,𝜌=1𝐴|𝑂

end for
Construct 𝑂𝑅𝐶𝐴𝜏𝐴 from all 𝑂𝑅𝐶𝐴𝜏,𝜌𝐴|𝐵 and 𝑂𝑅𝐶𝐴

𝜏,𝜌=1
𝐴|𝑂

Compute preferred velocity 𝑣pref𝐴
Sample velocities 𝑣∗𝐴 ∈ 𝑉

∗
𝐴 and rank by minimum distance from 𝑣pref𝐴 in𝕍3

Enumerate 𝛾𝐴 ∈ 𝛤𝐴 to find curve 𝛾new𝐴 corresponding to highest ranked 𝑣∗𝐴 that satisfies full
constraint space 𝑈𝐴
Take path given by 𝛾new𝐴

end for
end loop

then computed for each simple-airplane based on these estimates. Meanwhile, each simple-airplane
computes its preferred velocity and constructs the truncated velocity obstacles induced by the other
simple-airplanes within the window of time [0, 𝜏].

The reciprocity factor of the simple-airplane with respect to each other simple-airplane is
calculated based on their estimated constraints, followed by the optimal reciprocal collision avoidance
half-spaces. The collision-free velocities are then selected from the half-spaces by sampling, and they
are ranked by the shortest distance from the preferred velocity, with respect to Euclidean distance in
the velocity space𝕍3.

Finally, the remaining kinematic constraints that are not used in the calculation of reduced
set of kinematic and dynamic constraints are satisfied by enumerating a set of precomputed curves
that are a subset of all valid paths defined by those constraints. If the highest ranked velocity, or
one within a small threshold, can be attained by taking a path defined by one of the precomputed
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curves, then that velocity is valid, and the simple-airplane takes that path. Otherwise, the lower ranked
velocities are tested in turn against the curves until a match is found.

4.3.2 Kinematic and Dynamic Constraints

We base the kinematic constraints of a simple-airplane in the workspaceℝ3 on those of a simple
car (Latombe, ; Laumond, Sekhavat, and Lamiraux, ; LaValle, ) in the workspace ℝ2.
The simple car is characterized by four wheels arranged in pairs on two common axes, front and rear,
separated by a nonzero wheelbase. The front wheels steer to adjust the orientation of the simple car,
and the rear wheels are fixed, and drive the simple car forward and in reverse. The control inputs
of the simple car are its signed rear wheel speed, positive for forward and negative for reverse, and
steering angle, both of which may vary continuously within some specified bounds.

Definition .. The kinematic constraints of a simple car with position (𝑥, 𝑦) ∈ ℝ2, orientation 𝜃 ∈ 𝕊1,
and unit wheelbase are described by

�̇� = 𝑠 cos 𝜃,

̇𝑦 = 𝑠 sin 𝜃,
̇𝜃 = 𝑠 tan 𝜙,

where 𝑠 is the signed rear wheel speed, and 𝜙 is the steering angle. The control inputs 𝑠 and 𝜙 are
bounded, such that

−𝑠max ≤ 𝑠 ≤ 𝑠max,

−𝜙max ≤ 𝜙 ≤ −𝜙max,

for 𝑠max > 0 and 𝜙max < 12𝜋.

In contrast to the differential-drive robot of Section .., the individual wheels of a simple
car cannot be driven at different speeds independently. The simple car is also unable to follow any
continuous path within the workspace ℝ2, instantaneously or otherwise.

In an analogous manner to Chitsaz and LaValle () for the Dubins airplane, we extend the
simple car into theworkspaceℝ3 by adding varying altitude in the direction of the 𝑧-axis. For simplicity,
we ignore pitch and roll rotations and other disturbances, so we assume that the simple-airplane
remains parallel to the 𝑥𝑦-plane at all times, as indicated in Figure .. Therefore, the airspeed refers
the speed of the simple-airplane relative to the 𝑥-axis and 𝑦-axis, and yaw and steering angle refer to
angles relative to the 𝑥-axis and 𝑦-axis only.The rate of climb refers to the speed of the simple-airplane
parallel to 𝑥𝑧-plane and 𝑦𝑧-plane.
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Figure .: The kinematic model of a simple-airplane with unit wheelbase in the three-dimensional workspace.
The control inputs are signed speeds 𝑠𝑥𝑦 and 𝑠𝑧, and steering angle 𝜙.

Definition .. The kinematic constraints of a simple-airplane with position (𝑥, 𝑦, 𝑧) ∈ ℝ3 and yaw
𝜃 ∈ 𝕊1 are described by

�̇� = 𝑠𝑥𝑦 cos 𝜃,

̇𝑦 = 𝑠𝑥𝑦 sin 𝜃,

̇𝑧 = 𝑠𝑧,
̇𝜃 = 𝑠𝑥𝑦 tan 𝜙,

(.)

where (�̇�, ̇𝑦) is the airspeed, ̇𝑦 is the signed rate of climb, and ̇𝑧 is the yaw rate. The control inputs are
𝑢 = (𝑠𝑥𝑦, 𝑠𝑧, 𝜙), and are bounded, such that

𝑠min𝑥𝑦 ≤ 𝑠𝑥𝑦 ≤ 𝑠
max
𝑥𝑦 ,

−𝑠max𝑧 ≤ 𝑠𝑧 ≤ 𝑠
max
𝑧 ,

−𝜙max ≤ 𝜙 ≤ 𝜙max,

for 𝑠max𝑥𝑦 > 𝑠
min
𝑥𝑦 > 0, 𝑠

max
𝑧 > 0, and 𝜙

max < 𝜋/2.

Clearly, the system may control the airspeed and yaw rate independently from the rate of
climb. Note also that a simple-airplane cannot stop, or hover, or travel in reverse. We denote the
three-dimensional space of all permissible control inputs by 𝑈 and denote the space of all velocities
that may be attained by choosing a control input in 𝑈 by 𝑉. In a similar manner to Scheuer and
Laugier (), we also define the following constraints.





Definition .. The dynamic constraints of a simple-airplane with control inputs 𝑢 = (𝑠𝑥𝑦, 𝑠𝑧, 𝜙) are
described by

−𝑎𝑥𝑦 ≤ ̇𝑠𝑥𝑦 ≤ 𝑎𝑥𝑦,

−𝑎𝑧 ≤ ̇𝑠𝑧 ≤ 𝑎𝑧,

−𝑎𝜙 ≤ ̇𝜙 ≤ 𝑎𝜙,

where 𝑎𝑥𝑦, 𝑎𝑧, 𝑎𝜙 > 0.

In other words, a simple-airplane cannot increase or decrease its airspeed or rate of climb arbi-
trarily fast; neither can it adjust its steering angle discontinuously. We denote the three-dimensional
space of permissible changes in control inputs under these constraints by �̇�.

4.3.3 Reduced Constraints and Precomputed Curves

We use a two-stage approach to compute a velocity that satisfies the kinematic and dynamic
constraints of a simple-airplane 𝐴. First, we satisfy a reduced set of constraints 𝑈∗𝐴 that are easier
to compute, and then fit a set of curves 𝛤𝐴 that satisfy the full constraints, and can be precomputed
before navigation or simulation commences.

For the reduced constraints, we consider a window of time [0, 𝜏] and define a set of control
inputs that are valid at time 𝑡 + 𝜏 based on the control inputs 𝑢𝐴(𝑡) of the simple-airplane at time 𝑡 by

𝑈∗𝐴(𝑡 + 𝜏) ∶= {𝑢𝐴(𝑡) + �̇�𝜏 | �̇� ∈ �̇�𝐴} .

Shown in Figure ., we denote by 𝑉∗𝐴 the space of attainable velocities corresponding to 𝑈
∗
𝐴.

While the space 𝑈∗𝐴 depends on time 𝑡, and must be calculated at each time step, the set of
curves 𝛤𝐴 needs to be computed only once. Each curve 𝛾𝐴 ∈ 𝛤𝐴, where

𝛾𝐴 ∶ [0, 1] → ℝ
3,

corresponds to the path taken when a simple-airplane performs action 𝑢𝐴 for time 𝜏, and we populate
the set by uniformly sampling the range of valid values for each of 𝑠𝑥𝑦, 𝑠𝑧, and 𝜙. For each combination
of the three control inputs, we calculate the values �̇�, ̇𝑦, ̇𝑧, and ̇𝜃 by substituting directly into (.). The
change in velocity of the simple-airplane between the start and the end of each curve, i.e.,

𝛿𝑣𝛾𝐴 = 𝑣
𝛾=1 − 𝑣𝛾=0,

is precomputed and used in the last stage of our algorithm at each time step. We precompute
approximately ⁵ curves.
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Figure .: Space of velocities 𝑉∗ (shaded green) corresponding to the reduced kinematic and dynamic
constraints 𝑈∗ of a simple-airplane from which the potential new velocities are sampled, in (a) the 𝑥𝑦-plane
and (b) the 𝑥𝑧-plane in the three-dimensional velocity space.
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4.3.4 Optimal Reciprocal Collision Avoidance with Variable Reciprocity

Intuitively, a simple-airplane that has a larger space of attainable velocities 𝑉, or for ease of
calculation, a larger reduced space of attainable velocities 𝑉∗, is less constrained in terms of deviating
from its current path and plays a larger role in terms of taking more responsibility for avoiding a
collision than a simple-airplane that has a small choice of attainable velocities. Recall Definition .
of the optimal reciprocal collision avoidance half-plane in the velocity space𝕍2. In the velocity space
𝕍3, we have half-spaces instead of half-planes.

Definition .. The optimal reciprocal collision avoidance half-space of simple-airplane 𝐴 induced by
simple-airplane 𝐵 within the window of time [0, 𝜏] is defined as

𝑂𝑅𝐶𝐴𝜏𝐴|𝐵 ∶= {𝑣 | (𝑣 − (𝑣𝐴 +
1
2𝑤)) ⋅ 𝑛 ≥ 0} ⊆ 𝕍

3, (.)

where 𝑤 is the vector from 𝑣𝐴 − 𝑣𝐵 to the closest point on the boundary of 𝑉𝑂𝜏𝐴|𝐵 ⊆ 𝕍
3, and 𝑛 is the

outward normal of 𝜕𝑉𝑂𝜏𝐴|𝐵 at the point 𝑣𝐴 − 𝑣𝐵 + 𝑤.

Note the term 12𝑤 in (.). If we replace this by 𝜌𝐴|𝐵𝑤 for a suitable 𝜌𝐴|𝐵 ∈ [0, 1], we can express the
notion of “variable reciprocity.”

Definition .. The optimal reciprocal collision avoidance half-space of simple-airplane 𝐴 induced by
simple-airplane 𝐵 within the window of time [0, 𝜏] with variable reciprocity is defined as

𝑂𝑅𝐶𝐴𝜏,𝜌𝐴|𝐵 ∶= {𝑣 | (𝑣 − (𝑣𝐴 + 𝜌𝐴|𝐵𝑤)) ⋅ 𝑛 ≥ 0} ⊆ 𝕍
3,

where 𝜌𝐴|𝐵 is the reciprocity factor.

The value of the reciprocity factor is based on the relative volumes 𝜇(𝑉∗𝐴) and 𝜇(𝑉
∗
𝐵) in the

velocity space𝕍3 of the spaces of velocities 𝑉∗𝐴 and 𝑉
∗
𝐵, respectively.

Definition .. The reciprocity factor of simple-airplane𝐴with respect to simple-airplane 𝐵 is defined
as

𝜌𝐴|𝐵 ∶=
𝜇(𝑉∗𝐴)

𝜇(𝑉∗𝐴) + 𝜇(𝑉
∗
𝐵)
,

where 𝜇(𝑉∗) denotes the volume of 𝑉∗ in the velocity space𝕍3.

The reciprocity factor 𝜌𝐴|𝐵 is illustrated in Figure ., and is, informally, ameasure of the amount
of responsibility that a simple-airplane 𝐴 will take to avoid another simple-airplane 𝐵. A high value
of 𝜌𝐴|𝐵 denotes that simple-airplane 𝐴 is less constrained than simple-airplane 𝐵 and is able to take a
large amount of responsibility for avoiding a collision; a low value represents the opposite. The sum of
reciprocity factors for any two simple-airplanes always should be equal to one, i.e., 𝜌𝐴|𝐵 + 𝜌𝐵|𝐴 = 1.

Apart from this change, we construct the optimal reciprocal collision avoidance half-spaces
in an analogous way to the formulation in the two-dimensional velocity space 𝕍2. However, since
the velocities reachable during a window of time [0, 𝜏] are restricted by the kinematic and dynamic
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Figure .: (a) Two disc-bounded simple-airplanes𝐴 and 𝐵 with positions 𝑝𝐴 and 𝑝𝐵, velocities 𝑣𝐴 and 𝑣𝐵, and
bounding radii 𝑟𝐴 and 𝑟𝐵, respectively, in the three-dimensional workspace. (b)The optimal reciprocal collision
avoidance half-space 𝑂𝑅𝐶𝐴𝜏,𝜌𝐴|𝐵 of simple-airplane 𝐴 induced by simple-airplane 𝐵 within the finite window of
time [0, 𝜏] with variable reciprocity 𝜌 (shaded green) in the three-dimensional velocity space. Constant 𝜌 is the
reciprocity factor.

constraints of a simple-airplane, we search for collision-free velocities in the velocity space 𝕍3 by
sampling the intersection 𝑉∗𝐴 ∩ 𝑂𝑅𝐶𝐴

𝜏,𝜌
𝐴 . After finding these velocities, we rank them by the shortest

distance from the preferred velocity, with respect to Euclidean distance in the velocity space𝕍3.
The final task is to satisfy the remaining kinematic constraints that do not correspond to

velocities in the reduced space of velocities 𝑉∗𝐴. We enumerate each precomputed curve 𝛾𝐴 ∈ 𝛤𝐴,
comparing the velocity 𝑣𝐴 + 𝛿𝑣

𝛾
𝐴 obtained at the end of the curve with our highest ranking velocity

𝑣∗𝐴. If there exists a curve 𝛾𝐴 = 𝛾
new
𝐴 ∈ 𝛤𝐴 that allows 𝑣

∗
𝐴, or a velocity within some acceptable small

threshold of 𝑣∗𝐴, to be attained, then the velocity 𝑣∗𝐴 is valid, and the simple-airplane chooses the path
𝛾new𝐴 to make collision-free progress towards its goal. If not, we select a lower ranked velocity and
repeat the process, continuing until we find a valid combination of velocity 𝑣∗𝐴 and path 𝛾𝐴.

4.4 Experimentation and Performance

In this section, we describe the implementation of our algorithm and present the results of our
simulated experiments.

4.4.1 Implementation

We implemented our approach in C++, and the code was compiled using the GCC compiler,
version .. All calculationswere performed on a dual-core .GHz Intel Core Duoprocessorwithin
a standard notebook computer containing GB of memory and running Mac OS X Snow Leopard,
version ... Calculations for each simple-airplane were carried out in separate and independent
threads, and in parallel, where possible, using the Grand Central Dispatch library. For efficiency
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reasons, only a subset of all other simple-airplanes within a fixed radius of each simple-airplane, with
respect to Euclidean distance in the workspaceℝ3, were considered for collision avoidance, and these
simple-airplane were selected at the beginning of every time step using an algorithm based on 𝑘-D
trees (De Berg, Cheong, Van Kreveld, et al., ).

4.4.2 Experiments

We applied our approach to experiments containing up to sixteen simple-airplanes as follows.

.. Four to sixteen simple-airplanes are spaced evenly around the equator of a spherical environ-
ment. Their goals are to navigate to the antipodal positions on the sphere. The simple-airplanes
will meet and have to negotiate around each other in the center.

.. One to four dynamic obstacles move through a rectangular environment at a constant velocity.
Three to twelve simple-airplanes have to cross the path of the dynamic obstacles to navigate to
their goals.

We assume that each simple-airplane has full knowledge of the kinematic and dynamic con-
straints of the other simple-airplanes and can easily identify a dynamic obstacle from a cooperating
simple-airplane. Videos of these experiments are available online at http://gamma.cs.unc.edu/
S-AIRPLANE/.

4.4.3 Discussion

Traces of four simple-airplanes in Experiment . are shown in Figure .. The paths computed
by the simple-airplanes are collision-free and contain no oscillations.They are smooth and direct, with
no sudden changes in the direction of the simple-airplanes that would indicate that their kinematic
constraints have been violated. The simple-airplanes are not restricted to a fixed two-dimensional
plane and change altitude when and where necessary, clearly using the positions and velocities of the
other simple-airplanes to plan their path.

In Figure ., Experiment . demonstrates that our method can deal with an entity that is
entirely constrained and unable, or unwilling, to adjust its motion due to the proximity of simple-
airplanes. Here, the three simple-airplanes detect that the region of attainable velocities of the single
dynamic obstacle is a point and of zero volume, naturally obtaining a reciprocity factor 𝜌 = 1 that
corresponds to taking full responsibility for avoiding a collision without requiring the addition of
a special case to our formulation. The dynamic obstacle nominally has a reciprocity factor 𝜌 = 0,
indicating that it takes no responsibility for avoiding each simple-airplane.

Expanded versions of Experiment ., navigating sixteen simple-airplanes, and Experiment .,
navigating twelve simple-airplanes around four dynamic obstacles, are shown in Figures . and .,
respectively, and in the online video.
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Figure .: Traces of the trajectories of four simple-airplanes navigating simultaneously across a spherical
environment in the three-dimensional workspace using optimal reciprocal collision avoidance with variable
reciprocity (Experiment .) in (a) the 𝑥𝑦-plane and (b) the 𝑥𝑧-plane. Positions of simple-airplanes every
ten time steps are shown with a disc, later positions drawn on top of earlier positions. The trajectory of each
simple-airplane is a different color.

Figure .: A screenshot of sixteen simple-airplanes (small white ellipses) navigating simultaneously across a
spherical environment in the three-dimensional workspace using optimal reciprocal collision avoidance with
variable reciprocity (Experiment .).
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Figure .: Traces of the trajectories of three simple-airplanes navigating simultaneously across a rectangular
environment containing a dynamic obstacle in the three-dimensional workspace using optimal reciprocal
collision avoidance with variable reciprocity (Experiment .) in (a) the 𝑥𝑦-plane and (b) the 𝑥𝑧-plane. Positions
of simple-airplanes every ten time steps are shown with a disc, later positions drawn on top of earlier positions.
The trajectory of each simple-airplane is a different color, with red discs corresponding to the trajectory of the
dynamic obstacle.

Figure .: A screenshot of twelve simple-airplanes (smaller white ellipses) navigating simultaneously across
a spherical environment containing four dynamic obstacles (larger red spheres) in the three-dimensional
workspace using optimal reciprocal collision avoidance with variable reciprocity (Experiment .).
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Chapter 

GOAL VELOCITY OBSTACLES FOR SPATIAL NAVIGATION OF MULTIPLE VIRTUAL
AGENTS

5.1 Introduction and Motivation

The spatial navigation of groups of virtual agents to specified goal locations is an important
component of many video games and simulated environments. Large numbers of virtual agents may
be incorporated into game levels and simulated environments, and, often, these must interact with
agents controlled by a player. Efficient collision avoidance algorithms that can react to a dynamic
environment are particularly important in these circumstances since the virtual agents must adapt
their motion to the unpredictable actions of the human. A human-controlled agent may also represent
the goal location of a group of pursuing virtual agents. In this case, the group of virtual agents must be
able to converge on a possibly moving, planar goal region that is the footprint of the human-controlled
agent.

In previous work, such as Van den Berg, Lin, and Manocha (); Fiorini and Shiller (),
each virtual agent chooses an avoiding new velocity based on some optimization to make progress
toward its goal. Commonly, this optimization is on the preferred velocity (Definition .), which
may be directed to a roadmap node (Canny, ) or a fixed point in the center of a navigation mesh
edge or face (Snook, ). However, often these points approximate planar goal regions, and this
contraction of the goal region to a point can cause artifacts, such as collisions when several virtual
agents converge on a single point. Behavior would be improved if the virtual agent could navigate
to any point in a goal region. However, with limited exceptions (Curtis, Snape, and Manocha, ),
most velocity-based methods are simply coupled with a cluster of point goals and a goal allocation
algorithm that chooses the point goal of a virtual agent based on some heuristic. When goal regions
are moving, optimizing on a preferred velocity ignores that the position of the goal region may have
changed significantly by the time the virtual agent has computed a new velocity. Hence, the trajectory
of the virtual agent will not necessarily be directed toward its goal region, and the lengths of paths
to the goal region will be increased. If the velocity of the goal region were considered during the
optimization of the velocity, then the motion of the virtual agent toward its goal region would again
be improved.

We introduce the “goal velocity obstacle” for navigating multiple virtual agents to planar, spatial
goal regions that counters the above-described disadvantages of formulations that optimize on
preferred velocity.The basic idea is that instead of only using the notion of truncated velocity obstacles



(Definition .) to compute collision-avoiding velocities, we also use them to define the goal regions
of the virtual agent within velocity space. We call the truncated velocity obstacle of a virtual agent
induced by its goal region a “goal velocity obstacle,” and if the virtual agent chooses a velocity that is
inside the goal velocity obstacle at each time step, then it will eventually reach its goal region.

The goal velocity obstacle provides a unified formulation that allows for goals specified as points,
line segments, and bounded, planar regions in two dimensions that may be static or moving. A virtual
agent navigating using goal velocity obstacles may have multiple goal regions without requiring an
explicit goal allocation algorithm that would choose a particular goal region to navigate toward in
advance. Goal regions may also have a time dependency, such that the goal region is only available to
a virtual agent during a specific window of time, without requiring an explicit scheduling algorithm.

In experiments with hundreds of virtual agents, those navigating using goal velocity obstacles
toward static, moving, andmultiple goal regions have shorter path lengths from their starting positions
to their goal regions and fewer collisions with other virtual agents, than when using velocity-based
methods that optimize on a single preferred velocity toward the goal of each virtual agent. The
additional computational overhead is just a few microseconds, per virtual agent, per time step,
compared to previous velocity-based methods.

5.2 Prior Work

The prevalent approach to navigation in video games, mobile robotics, and simulated envi-
ronments has been to use roadmaps (Canny, ). Increasingly, navigation meshes (Kallmann,
; Snook, ; Van Toll, Cook, and Geraerts, ) and similar methods (Geraerts, Kamphuis,
Karamouzas, et al., ; Pettré, Laumond, and Thalmann, ) are superseding that approach.
Randomized methods (Kavraki, Švestka, Latombe, et al., ; LaValle and Kuffner, ) may be
used for roadmap generation, and the Hertel-Mehlhorn algorithm (Hertel and Mehlhorn, ) and
space-filling volumes (Tozour, ) allow for automatic navigation mesh generation.

In static environments, derivatives of the A* algorithm (Hart, Nilsson, and Raphael, )
are usually used to search the roadmap or navigation mesh for a path to the goal. In dynamic
environments, the D* algorithm (Stentz, )may be used to repair a previously planned path instead
of re-planning from scratch. Planners based on roadmaps have also been adapted to accommodate
dynamic environments by reusing information that was previously computed (Ferguson, Kalra, and
Stentz, ; Jaillet and Simeon, ; Kallmann and Mataric, ; Zucker, Kuffner, and Branicky,
) or by integrating dynamic obstacle movement directly into the planner (Hsu, Kindel, Latombe,
et al., ).

Historically, video games have used force-based methods (Reynolds, ), in combination
with roadmap and navigation mesh approaches, to provide local collision avoidance for groups of
virtual agents moving through the environment. Many other methods from mobile robotics (Fox,
Burgard, and Thrun, ; Petti and Fraichard, ) and rule-based or social-force models from
crowd simulation (Guy, Curtis, Lin, et al., ; Helbing andMolnár, ; Karamouzas and Overmars,
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; Kluge and Prassler, ; Van Welbergen, Van Basten, Egges, et al., ) are equally suited to
the navigation of virtual agents in video games and simulated environments.

Generally, current collision avoidance approaches are limited to using some form of point goal
(Van den Berg, Patil, Sewall, et al., ) or line segment goal (Curtis, Snape, and Manocha, ) in
connection with the global planner.

5.3 Goal Velocity Obstacles

In this section, we introduce the new concept of using truncated velocity obstacles (Van den
Berg, Guy, Lin, et al., ; Guy, Chhugani, Kim, et al., ; Tychonievich, Zaret, Mantegna, et al.,
) to specify the goal regions of virtual agents in the two-dimensional velocity space from which
to choose collision-free velocities toward their goal regions in the two-dimensional workspace.

5.3.1 Overall Approach

We adopt the problem description and notation of Section . with one important change;
instead of a point goal 𝑝goal𝐴 ∈ ℝ

2, let each virtual agent 𝐴 instead have a bounded goal region 𝐺 ⊆ ℝ2,
which is not necessarily known to the other virtual agents. The goal region may be of any shape, need
not simply be a point, and may have a nonzero linear velocity 𝑣𝐺 ∈ 𝕍

2. For simplicity, we assume that
the goal region does not rotate, i.e., its angular velocity is zero. The objective of each virtual agent 𝐴
is now to choose, independently and simultaneously, a new velocity 𝑣new𝐴 ∈ 𝕍

2 at each time step to
compute a trajectory toward any point in its goal region 𝐺 without collisions with other virtual agents,
static obstacles, or dynamic obstacles. A virtual agent 𝐴 has reached its goal region 𝐺 if 𝐴 ∩ 𝐺 ≠ ∅.

Recall the definitions of the truncated velocity obstacle (Definition .) and preferred velocity
(Definition .) of a virtual agent 𝐴 that is navigating to a point goal 𝑝𝐺 ∈ ℝ

2 with a preferred speed
𝑣pref𝐴 ∈ 𝕍 while avoiding a virtual agent 𝐵:

𝑉𝑂𝜏𝐴|𝐵 ∶= {𝑣 | ∃𝑠 ∈ [0, 𝜏] ∶∶ 𝑠(𝑣 − 𝑣𝐵) ∈ 𝐵 ⊕ −𝐴} ,

𝑣pref𝐴 ∶= 𝑣
pref
𝐴
𝑝𝐴 − 𝑝𝐺
‖𝑝𝐴 − 𝑝𝐺‖2

.

Instead of using truncated velocity obstacles purely for excluding velocities that may cause collisions
with other virtual agents or dynamic obstacles, then optimizing with respect to a preferred velocity
for navigation to a goal in the workspace ℝ2, we propose the additional use of velocity obstacles to
define the goal regions of a virtual agent within the velocity space𝕍2.

Definition .. The goal velocity obstacle of virtual agent 𝐴 toward the goal region 𝐺 is defined as

𝐺𝑉𝑂𝐴|𝐺 ∶= 𝑉𝑂
𝜏
𝐴|𝐺 ∶= {𝑣 | ∃𝑠 ∈ [0, 𝜏] ∶∶ 𝑠(𝑣 − 𝑣𝐵) ∈ 𝐺 ⊕ −𝐴} ⊆ 𝕍

2.

We then choose a new velocity 𝑣new𝐴 ∈ 𝕍
2 of virtual agent 𝐴 such that 𝑣new𝐴 lies not only outside the

truncated velocity obstacles induced by other virtual agents, but also inside the goal velocity obstacle
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Figure .: (a) Virtual agent 𝐴 navigating toward a static line segment goal region 𝐺 in the two-dimensional
workspace while avoiding virtual agent 𝐵. (b) The goal velocity obstacle 𝐺𝑉𝑂𝐴|𝐺 of virtual agent 𝐴 toward the
goal region 𝐺 (shaded green) in the two-dimensional velocity space, and the truncated velocity obstacle 𝑉𝑂𝜏𝐴|𝐵
of virtual agent 𝐴 induced by virtual agent 𝐵 (shaded pink).

toward the goal region 𝐺, i.e., 𝑣new𝐴 ∈ 𝐺𝑉𝑂𝐴|𝐺 ⧵ 𝑉𝑂
𝜏
𝐴. This is illustrated in Figure ., and the overall

approach is summarized by Algorithm ..

5.3.2 Choice of Velocities

In general, there will be a choice of collision-free velocities 𝑣new𝐴 that will navigate the virtual
agent 𝐴 to some point in its goal region. Assuming that there is no preference as to which point in
the goal region a virtual agent 𝐴 ultimately reaches, we choose a velocity 𝑣opt𝐴 ∈ 𝕍

2, which we call
the “optimization velocity,” with respect to which we must optimize from those velocities that are
collision-free and inside the goal velocity obstacle, i.e.,

𝑣new𝐴 = argmin
𝑣∈𝐺𝑉𝑂𝐴|𝐺⧵𝑉𝑂𝜏𝐴

‖𝑣 − 𝑣opt𝐴 ‖2 .

Motivated by a desire for virtual agents to make as minimal change in velocity as possible at each time
step, c.f., Guy, Curtis, Lin, et al. (), we choose the optimization velocity 𝑣opt𝐴 of a virtual agent 𝐴 as
follows.

. If the current velocity 𝑣𝐴 is inside the goal velocity obstacle 𝐺𝑉𝑂𝐴|𝐺, we choose the current
velocity as the optimization velocity, whether or not that velocity is collision-free, i.e., 𝑣opt𝐴 ∶= 𝑣𝐴.

. If the current velocity is outside the goal velocity obstacle, so the virtual agent is moving away
from its goal region, we choose the closest velocity to the current velocity 𝑣𝐴, with respect to
Euclidean distance in the velocity space𝕍2, that lies inside the goal velocity obstacle, i.e.,

𝑣opt𝐴 ∶= argmin
𝑣∈𝐺𝑉𝑂𝐴|𝐺

‖𝑣 − 𝑣𝐴‖2 .
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Algorithm .: Our method for navigating multiple virtual agents in the two-dimensional workspace using goal
velocity obstacles.

inputs
List of virtual agents𝒜 ≠ ∅ each with list of goal regions 𝒢 ≠ ∅
List of static and dynamic obstacles 𝒪

loop
for all 𝐴 ∈ 𝒜 do

for all 𝐵 ∈ 𝒜 such that 𝐴 ≠ 𝐵 do
Construct 𝑉𝑂𝐴|𝐵
Construct 𝑅𝑉𝑂𝐴|𝐵
Construct𝐻𝑅𝑉𝑂𝐴|𝐵 from 𝑉𝑂𝐴|𝐵 and 𝑅𝑉𝑂𝐴|𝐵

end for
for all 𝑂 ∈ 𝒪 do

Construct 𝑉𝑂𝐴|𝑂
end for
Construct𝐻𝑅𝑉𝑂𝐴 from all𝐻𝑅𝑉𝑂𝐴|𝐵 and all 𝑉𝑂𝐴|𝑂
for all 𝐺 ∈ 𝒢 do

Construct 𝐺𝑉𝑂𝐴|𝐺 ∶= 𝑉𝑂
𝜏
𝐴|𝐺

end for
Construct 𝐺𝑉𝑂𝐴 from all 𝐺𝑉𝑂𝐴|𝐺
Compute optimization velocity 𝑣opt𝐴 from current velocity 𝑣𝐴 and 𝐺𝑉𝑂𝐴
Compute 𝐺𝑉𝑂𝐴 ⧵ 𝐻𝑅𝑉𝑂𝐴
Compute new velocity 𝑣new𝐴 ∈ 𝐺𝑉𝑂𝐴 ⧵ 𝐻𝑅𝑉𝑂𝐴 closest to 𝑣

opt
𝐴

end for
end loop

The optimization velocity 𝑣opt𝐴 is distinct from the notion of preferred velocity 𝑣pref𝐴 , and, in
general, much less influences the path taken by the virtual agent 𝐴.

5.3.3 High Densities of Virtual Agents

By definition, if a virtual agent chooses a velocity inside the goal velocity obstacle at every time
step, it will reach its goal region at some future moment in time, assuming that such a velocity exists.
If, however, due to a high density of virtual agents, there is no such velocity, i.e.,

𝐺𝑉𝑂𝐴|𝐺 ⊆ 𝑉𝑂
𝜏
𝐴 ∶= ⋃
𝐵∈𭒜
𝐴≠𝐵

𝑉𝑂𝜏𝐴|𝐵,

this means that either the goal region 𝐺 is moving away from the virtual agent 𝐴 at a faster speed
than the virtual agent can attain, or else the path to the goal region is blocked by other virtual agents
or dynamic obstacles. In the first case, it is not possible for the virtual agent to reach its goal region.
However, in the second case, we choose a new velocity by relaxing some of the constraints in velocity
space. In relaxing constraints, wemust balance the possibly conflicting objectives of avoiding collisions
and reaching the goal region:
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Figure .: (a) Virtual agent 𝐴 navigating toward a moving disc-shaped goal region 𝐺 with velocity 𝑣𝐺 (yellow
disc) in the two-dimensional workspace while avoiding virtual agent 𝐵. (b) The goal velocity obstacle 𝐺𝑉𝑂𝐴|𝐺
of virtual agent 𝐴 toward the goal region 𝐺 (shaded green) in the two-dimensional velocity space, and the
truncated velocity obstacle 𝑉𝑂𝜏𝐴|𝐵 of virtual agent 𝐴 induced by virtual agent 𝐵 (shaded pink).

. If the priority is to avoid collisions, above all else, we can replace the goal velocity obstacle
𝐺𝑉𝑂𝐴|𝐺 with the whole of the velocity space 𝕍2 at each time step until a velocity within the
goal velocity obstacle becomes available, i.e., 𝑣new𝐴 ∈ 𝕍

2 ⧵ 𝑉𝑂𝜏𝐴 ≠ ∅.

. If an increased possibility of collision is allowable, we remove, in turn, the truncated velocity
obstacle induced by the most distant virtual agent, with respect to Euclidean distance in the
workspace ℝ2, until a velocity within the goal velocity obstacle becomes free, i.e.,

𝑣new𝐴 ∈ 𝐺𝑉𝑂𝐴|𝐺 ⧵ (𝑉𝑂
𝜏
𝐴1 ∪⋯ ∪ 𝑉𝑂

𝜏
𝐴𝑚) ≠ ∅,

where ‖𝑝𝐴 − 𝑝𝐴𝑖‖2 ≤ ‖𝑝𝐴 − 𝑝𝐴𝑖+1‖2, and 𝐺𝑉𝑂𝐴|𝐺 ⊆ 𝑉𝑂
𝜏
𝐴1 ∪⋯ ∪ 𝑉𝑂

𝜏
𝐴𝑚+1 for𝑚 < 𝑛.

In our experiments, we favored the second of these options.

5.3.4 Moving Goal Regions

Consider now a goal region moving in a near-perpendicular direction to a virtual agent (see
Figure .). When navigating using preferred velocities, the future trajectory 𝑝𝐺 + 𝑠𝑣𝐺 of the goal
region 𝐺 is not taken into account, only the instantaneous position of its center 𝑝𝐺. Therefore, the
virtual agent is always changing its preferred velocity, and, hence, current velocity, at each time step,
navigating toward the position of the goal region at the previous time step.This will occur even though
it is apparent that the goal region will cross the path of the virtual agent if the virtual agent continues
on its original trajectory. Contrast this with the goal velocity obstacle, which, by definition, considers
the future trajectory of the goal region, coupled with an optimization velocity that favors minimal
changes in current velocity.
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5.3.5 Multiple Goal Regions

When navigating using preferred velocities, if a goal region consists of the union of all elements
of a set 𝒢 of multiple goal sub-regions (see Figure .), virtual agent 𝐴 would be required to choose in
advance one goal sub-region𝐺 ∈ 𝒢 toward which to navigate explicitly and set 𝑣pref𝐴 in the direction of
𝑝𝐺. However, with the formulation of goal velocity obstacles, we can construct goal velocity obstacles
of each individual goal sub-region and then define the goal velocity obstacle of the entire goal region
as the union of these individual goal velocity obstacles, i.e.,

𝐺𝑉𝑂𝐴|𭒢 ∶= ⋃
𝐺∈𭒢
𝐺𝑉𝑂𝐴|𝐺.

This has the advantage that if the path to one of the goal sub-regions 𝐺 is blocked by other virtual
agents, then the navigating virtual agent will automatically divert to another goal sub-region since
the goal velocity obstacle 𝐺𝑉𝑂𝐴|𝐺 corresponding to the blocked goal sub-region will be completely
covered with truncated velocity obstacles, i.e., 𝐺𝑉𝑂𝐴|𝐺 ⊆ 𝑉𝑂

𝜏
𝐴.

We choose the optimization velocity to be such that it lies inside the goal velocity obstacle of
the goal sub-region toward which the virtual agent moved at the previous time step, which reduces
the possibility that the velocity of the virtual agent will oscillate between goal velocity obstacles of
different goal sub-regions. While the optimization velocity is chosen relative to a particular goal
velocity obstacle, this does not preclude a velocity being chosen if that goal sub-region is later found
to be blocked, and no explicit changes to the formulation are required to accommodate this situation.

5.3.6 Goal Regions with TimeWindows

Suppose now that a goal region is only available to a virtual agent during some time window
[𝜏1, 𝜏2] relative to the current time. We can express this time dependency by truncating the goal
velocity obstacle both at the apex and toward the base (see Figure .). For this doubly truncated goal
velocity obstacle, the values of 𝜏1 and 𝜏2 decrease at each successive time step, and the definition of
the goal velocity obstacle 𝐺𝑉𝑂𝜏1,𝜏2𝐴|𝐺 of virtual agent 𝐴 toward the goal region 𝐺 with time window
[𝜏1, 𝜏2] becomes

𝐺𝑉𝑂𝜏1,𝜏2𝐴|𝐺 = {𝑣 | ∃𝑠 ∈ [𝜏1, 𝜏2] ∶∶ 𝑠(𝑣 − 𝑣𝐵) ∈ 𝐺 ⊕ −𝐴} .

5.3.7 Point Goals and Point Virtual Agents

While, by construction, the goal velocity obstacle most benefits scenarios that do not treat the
goal regions and virtual agents simply as points, we can accommodate their occurrence as follows.
The goal velocity obstacle of point virtual agent 𝑝𝐴 toward point goal 𝑝𝐺 will consist of a single ray,

𝐺𝑉𝑂𝐴|𝐺 = {𝑣𝐺 + 𝑠(𝑝𝐺 − 𝑝𝐴) | 𝑠 > 0} ,
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Figure .: (a) Virtual agent 𝐴 navigating toward a choice of two static line segment goal sub-regions 𝐺 and𝐻
in the two-dimensional workspace while avoiding virtual agent 𝐵. (b) The goal velocity obstacles 𝐺𝑉𝑂𝐴|𝐺 of
virtual agent 𝐴 toward goal sub-region 𝐺 and 𝐺𝑉𝑂𝐴|𝐻 of virtual agent 𝐴 toward goal sub-region𝐻 (shaded
green) in the two-dimensional velocity space, and the truncated velocity obstacle 𝑉𝑂𝜏𝐴|𝐵 of virtual agent 𝐴
induced by virtual agent 𝐵 (shaded pink).
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Figure .: (a) Virtual agent 𝐴 navigating toward a static line segment goal region 𝐺 with limited time window
[𝜏1, 𝜏2] in the two-dimensional workspace while avoiding virtual agent 𝐵. (b) The goal velocity obstacle
𝐺𝑉𝑂𝐴|𝐺 of virtual agent 𝐴 toward the goal region 𝐺 with limited time window [𝜏1, 𝜏2] (shaded green) in
the two-dimensional velocity space, and the truncated velocity obstacle 𝑉𝑂𝜏𝐴|𝐵 of virtual agent 𝐴 induced by
virtual agent 𝐵 (shaded pink).
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so the optimization velocity will lie on that ray. If the point goal is static, i.e., 𝑣𝐺 = 0, then the
optimization velocity will be toward the point goal, although possibly with a different magnitude to
that of a preferred velocity, depending on the current velocity of the virtual agent. If the new velocity
cannot lie on the ray, due to other virtual agents or dynamic obstacles blocking the path to the point
goal, then we must replace the ray that is the goal velocity obstacle with the whole of the velocity space
𝕍2 until a velocity on the ray becomes available in the future. While the formulation is effectively
reduced to that of previous methods, i.e., using a single, preferred velocity, we do not need to handle
it as a special case.

5.4 Experimentation and Performance

In this section, we describe the implementation of our approach and discuss the results of our
experiments involving multiple virtual agents.

5.4.1 Implementation

We implemented our approach in C++ using hybrid reciprocal velocity obstacles (Chapter )
for collision avoidance between pairs of virtual agents. Our algorithm to choose the new velocity of
each virtual agent at every time step was based on the ClearPath efficient geometric algorithm (Guy,
Chhugani, Kim, et al., ). Calculations for each virtual agent were carried out in separate and
independent threads, and in parallel, where possible, using Intel Threading Building Blocks, version
.. The code was compiled using the Intel C++ Compiler XE, version .

For efficiency reasons, only a subset of all other virtual agents within a fixed radius of each virtual
agent, with respect to Euclidean distance in the workspaceℝ2, were considered for collision avoidance,
and these virtual agents were selected at the beginning of every time step using an algorithm based
on 𝑘-D trees (De Berg, Cheong, Van Kreveld, et al., ).

5.4.2 Experiments

Weapplied our approach to experiments containing twenty-five to twohundred virtual agents as
follows.

.. The virtual agents are positioned evenly along one side of a rectangular environment in two
dimensions. The virtual agents must navigate to one static line segment goal region located
midway along the opposite side of the environment to the starting positions of the virtual
agents.

.. The virtual agents must navigate across the environment toward one moving line segment goal
region. The goal region moves at a constant velocity along the opposite side of the environment
to the starting positions of the virtual agents, perpendicular to the direct paths of the virtual
agents to the goal region.
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.. The virtual agents must navigate across the environment toward two static line segment goal
regions located at each end of the opposite side of the environment to the starting positions of
the virtual agents.

Each experiment was performed twice; first using goal velocity obstacles and hybrid reciprocal
velocity obstacles, and then using preferred velocities and hybrid reciprocal velocity obstacles. Each
virtual agent had a radius of m, an initial or preferred speed of .m/s, as appropriate, and amaximum
speed of .m/s.

Tables . to . list the total number of collisions between virtual agents during the entirety of
each experiment, the average path length from the starting position to the goal region of each virtual
agent in each experiment, and the average computation time at each time step. All timings are for one
core of a quad-core .GHz Intel Core i processor within a standard desktop computer containing
GB memory and running OS X Mountain Lion, version ... Videos of these experiments are
available online at http://gamma.cs.unc.edu/GVO/.

5.4.3 Discussion

Figures . to . show that, for twenty-five virtual agents, almost the entire goal region is
utilized by the virtual agents in each experiment using goal velocity obstacles. In Figure ., the virtual
agents take into account the motion of the goal region, and, in particular, virtual agents farthest from
the starting position of the goal region maintain a direct path to intercept the goal region as it passes
close by, later in the experiment. Figure . demonstrates the virtual agents splitting into two groups
to move toward the closest goal region to their starting position.

From Table ., it is clear that in all experiments, for twenty-five to two hundred virtual
agents, the number of collisions between virtual agents is significantly less when using goal velocity
obstacles, rather than preferred velocities. Specifically, there are at least fifty-five percent fewer
collisions in the experiments with one static goal region, at least ninety-seven percent fewer collisions
in the experiments with one moving goal region, and at least ninety percent fewer collisions in the
experiments with two static goal regions.

The length of the path that each virtual agent takes to a goal region, shown in Table ., is also
less when using goal velocity obstacles. In the experiments with one or two static goal regions, the
paths are at least five percent shorter, and in the experiments with one moving goal region, the paths
are always at least ten percent shorter, and more than twenty-five percent shorter in most cases.

Computationally, Table . reports that it takes between two percent and twenty-one percent
longer, at each time step, to compute new velocities using goal velocity obstacles, rather than preferred
velocities. Mostly, the difference is less than ten percent, however, and, overall, using goal velocity
obstacles adds only a few microseconds of computation, per agent, at each time step.
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Figure .: Screenshots of twenty-five virtual agents (colored discs) navigating simultaneously toward one
static line segment goal region (white line) in the two-dimensional workspace using goal velocity obstacles
(Experiment .).
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Figure .: Screenshots of twenty-five virtual agents (colored discs) navigating simultaneously toward one
moving line segment goal region (between the two white discs) in the two-dimensional workspace using goal
velocity obstacles (Experiment .).





Figure .: Screenshots of twenty-five virtual agents (colored discs) navigating simultaneously toward two
static line segment goal regions (white lines) in the two-dimensional workspace using goal velocity obstacles
(Experiment .).
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Table .: Total number of collisions between virtual agents during the entirety of each experiment using hybrid
reciprocal velocity obstacles with preferred velocities (PV) and hybrid reciprocal velocity obstacles with goal
velocity obstacles (GVO).

Number of Number of collisions
virtual agents per experiment

PV GVO

Experiment 5.1 25 56 0
50 62 10
100 80 24
200 106 46

Experiment 5.2 25 132 4
50 144 2
100 166 2
200 218 0

Experiment 5.3 25 348 4
50 498 10
100 778 28
200 996 94

Table .: Average path length from the starting position to the goal region of each virtual agent, in meters,
using hybrid reciprocal velocity obstacles with preferred velocities (PV) and hybrid reciprocal velocity obstacles
with goal velocity obstacles (GVO).

Number of Path length per
virtual agents virtual agent (m)

PV GVO

Experiment 5.1 25 243 229
50 266 246
100 340 308
200 441 404

Experiment 5.2 25 323 239
50 341 241
100 407 301
200 455 405

Experiment 5.3 25 217 206
50 241 227
100 315 296
200 428 407
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Table .: Average computation time at each time step on one core of a .GHz Intel Core i processor, in
milliseconds, for virtual agents using hybrid reciprocal velocity obstacles with preferred velocities (PV) and
hybrid reciprocal velocity obstacles with goal velocity obstacles (GVO).

Number of Computation time
virtual agents per time step (ms)

PV GVO

Experiment 5.1 25 0.5 0.6
50 1.4 1.5
100 3.1 3.3
200 6.4 6.6

Experiment 5.2 25 2.4 2.9
50 4.8 4.9
100 6.9 7.3
200 9.1 9.7

Experiment 5.3 25 0.3 0.4
50 1.0 1.1
100 2.0 2.3
200 4.0 4.1
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Chapter 

CONCLUSION

6.1 Thesis Statement and Conclusions

We conclude by recalling our thesis statement from Section ..

Multiple mobile robots or virtual agents with kinematic and dynamic constraints may
navigate through shared environments in two-dimensional or three-dimensional workspaces
containing static and dynamic obstacles without collisions or oscillations andwithout central
coordination using formulations based on velocity obstacles.

We have presented the following contributions in support of the thesis statement.

Independent Navigation of Multiple Mobile Robots or Virtual Agents with Hybrid Reciprocal
Velocity Obstacles. We have introduced the “hybrid reciprocal velocity obstacle” for navigating
multiple mobile robots or virtual agents sharing an environment in the two-dimensional workspace.

We take into account obstacles in the environment and uncertainty in radius, position, and
velocity.We also consider the dynamics and kinematics of the robots, allowing us to apply our approach
to iRobot Create mobile robots. Our formulation explicitly considers reciprocity, such that each robot
can assume that other robots are cooperating to avoid collisions, but each of the robots acts completely
independently without central coordination, and does not communicate with other robots. We show
direct and collision-free navigation that is free of oscillations in velocity.

We have shown the effectiveness of approach in experiments with up to five mobile robots or
one thousand virtual agents sharing an environment.

Smooth Navigation of Multiple Robots under Differential-Drive Constraints. We have described
a method for obtaining control inputs, the two wheel speeds, from a given velocity of a robot with
differential-drive constraints using the notion of effective center and effective radius to overcome the
inherent limitation that the center of a differential-drive robot may not be moved instantaneously
in a direction orthogonal to its wheels. We have combined this formulation with optimal reciprocal
collision avoidance to derive our algorithm and proved that it theoretically guarantees smooth and
locally collision-free motion for multiple differential-drive robots navigating in a shared environment
in the two-dimensional workspace. Each differential-drive robot is independent and is able to react



to the other robots without explicit communication by simply observing their current positions and
velocities.

While other approaches (Kluge, Bank, Prassler, et al., ) exhibit empirically smooth tra-
jectories in limited examples, they provide no mathematical guarantees that the trajectories will
be smooth in other circumstances. Furthermore, our algorithm is not constrained to a finite set of
behaviors (Pallottino, Scordio, Bicchi, et al., ), potentially allowing any maneuver permitted by
the kinematics of each robot. Unlike other approaches that require explicit communication between
every robot (Bekris, Tsianos, and Kavraki, ), robots using our algorithm can be fully independent,
making all decisions based only on their own observations.

We have implemented and applied our method to iRobot Create robots and shown its effective-
ness in experiments with up to four robots sharing an environment, as well as in simulations of up to
one thousand differential-drive robots.

Navigating Multiple Simple-Airplanes inThree-Dimensional Workspace. We have introduced the
“simple-airplane” and presented an extension of the optimal reciprocal collision avoidance algorithm
in three dimensions to allow multiple simple-airplanes to navigate among each other. In practice,
our approach is able to generate collision-free and oscillation-free paths that satisfy the underlying
kinematic and dynamic constraints. We consider most kinematic and dynamic constraints of the
simple-airplane when choosing a velocity from those permitted by the optimal reciprocal collision
avoidance algorithm, and then enumerate a set of precomputed curves to confirm that the new velocity
meets all remaining kinematic constraints.

We use the notion of reciprocity to prevent undesirable oscillations, and, by incorporating
kinematic and dynamic constraints, introduce the idea of “variable reciprocity”  to ensure that simple-
airplanes that are less constrained take more responsibility for avoiding collisions. Moreover, the
simple-airplanes are restricted to neither constant speed nor fixed altitude, as is the case in many
approaches.

We have implemented our method and performed experiments that simulate up to sixteen
simple-airplanes. We compute trajectories that are observed to be both free of collisions and free of
oscillations, and which satisfy the kinematic and dynamic constraints of each simple-airplane.

Goal Velocity Obstacles for Spatial Navigation of Multiple Virtual Agents. We have presented the
“goal velocity obstacle” for the spatial navigation of multiple virtual agents to arbitrary-shaped, planar
goal regions in the two-dimensional plane. Our approach uses truncated velocity obstacles not only
to compute velocities that may cause collisions with other virtual agents, but also to define the goal
velocity obstacle, which specifies velocities in the two-dimensional velocity space that will direct a
virtual agent toward its goal region in the workspace.

Our goal velocity obstacle formulation is general, allowing for planar goal regions of any shape
without the need to approximate the goal region as a point or line segment as is required by most
previous collision avoidance methods. Goal regions may be static, or they may be moving with a
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nonzero linear velocity. We may specify multiple goal regions of each virtual agent without requiring
an explicit goal allocation algorithm to choose a particular goal region of each virtual agent in advance
of each time step. Our approach also allows for goal regions that are available for a limited time
window.

We have applied our approach to multiple challenging experiments by integrating with the
hybrid reciprocal velocity obstacle formulation for collision avoidance. On average, the virtual agents
traverse shorter path lengths and have fewer collisions than when simply using preferred velocities
directed to a single point in their goal region instead of goal velocity obstacles.

6.2 Limitations and Future Work

Our work has some limitations that could be addressed by future work.

Independent Navigation of Multiple Mobile Robots or Virtual Agents with Hybrid Reciprocal
VelocityObstacles and SmoothNavigation ofMultiple Robots underDifferential-Drive Constraints.
In the future, we would like to develop amore sophisticated and less conservativemodel of uncertainty
that takes into account more than simply uncertainty in position and velocity originating from the
sensors of the robot and apply it to both the hybrid reciprocal velocity formulation and optimal
reciprocal collision avoidance with effective center and effective radius.

In both of our implementations, the robots currently receive their sensor readings from an
overhead digital video camera and computation is performed on a single notebook computer. As a
next step, we would like to equip each robot with purely localized sensing and distributed computing,
using odometry, orientation sensors, and relative positions to estimate global positions (Roumeliotis
and Rekleitis, ). Our approaches can be applied without adaptation if data is gathered locally,
and the hybrid reciprocal velocity obstacles and optimal reciprocal collision avoidance half-planes
are defined just as well using only the relative positions and velocities of the mobile robots.

At present, we assume in general that a velocity outside all hybrid reciprocal velocity obstacles
or inside an optimal reciprocal collision avoidance half-plane exists. We would like to relax this
assumption in the future to accommodate very dense situations without observing any collisions or
deadlocks when the space is entirely covered with hybrid reciprocal velocity obstacles or optimal
reciprocal collision avoidance half-planes.

Our method for incorporating static obstacles into the hybrid reciprocal velocity obstacle
formulation does not allow for navigation through some narrow passages, and the enlarged effective
radius of each differential-drive robot makes maneuvering through dense situations and narrow
passages difficult when using optimal reciprocal collision avoidance. Also, our formulations consider
kinematic constraints, but, at most, very simple dynamic constraints. We have addressed this, in part,
with the acceleration-velocity obstacle formulation (Van den Berg, Snape, Guy, et al., ; Snape, Guy,
Van den Berg, et al., ).





Navigating Multiple Simple-Airplanes inThree-Dimensional Workspace. Our current implemen-
tation ignores both the roll and the pitch of airplanes, but in principle, we can easily extend it to
add extra kinematic constraints. We also ignore some external factors, such as wind and drag, that
may influence the paths chosen by a simple-airplane. Furthermore, we currently assume that each
simple-airplane has perfect sensing. We would like to address all of these limitations in the future.

While our formulation is capable of handling dynamic obstacles, we do not consider static
obstacles and the resulting complex environments, containing, for instance, buildings or higher
terrain. We would also need to add a global planner to our approach to direct the simple-airplanes to
their goals.

Given that each simple-airplane essentially plans its path independently by only observing other
simple-airplanes and dynamic obstacles, there is a significant opportunity to exploit the parallel nature
of this approach further. Another possibility would be a decentralized approach for the navigation of
physical robots, such as quad-rotor helicopters.

Goal Velocity Obstacles for Spatial Navigation of Multiple Virtual Agents. We have focused on
virtual agents, such as in video games or simulated environments, but, in principle, the goal velocity
obstacle could be adapted for the navigation of multiple mobile robots.

While we have only considered planar goal regions in the two-dimensional workspace and
goal velocity obstacles in the two-dimensional velocity space, in the future, we could extend our
formulation to three dimensions for the navigation of virtual or real-world flying agents to goal
regions in the three-dimensional workspace and goal velocity obstacles in the three-dimensional
velocity space.
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